首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   7篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   6篇
  2013年   7篇
  2012年   4篇
  2011年   4篇
  2010年   6篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有99条查询结果,搜索用时 31 毫秒
1.
The metabolism of fructose was investigated in the bivascularly and hemoglobin-free perfused rat liver. Anterograde and retrograde perfusions were performed. In anterograde perfusion, fructose was infused at identical rates (19 mumols min-1 g-1) via the portal vein (all liver cells) or the hepatic artery (predominantly perivenous cells); in retrograde perfusion fructose was infused via the hepatic vein (all liver cells) or the hepatic artery (only periportal cells). The cellular water spaces accessible via the hepatic artery were measured by means of the multiple-indicator dilution technique. The following results were obtained. (i) Fructose was metabolized to glucose, lactate and pyruvate even when this substrate was infused via the hepatic artery in retrograde perfusion; oxygen consumption was also increased. (ii) When referred to the water spaces accessible to fructose via the hepatic artery in each perfusion mode, the rate of glycolysis was 0.99 +/- 0.14 mumols min-1 ml-1 in the retrograde mode; and, 2.05 +/- 0.19 mumols min-1 ml-1 in the anterograde mode (P = 0.002). (iii) The extra oxygen uptake due to fructose infusion via the hepatic artery was 1.09 +/- 0.16 mumols min-1 ml-1 in the retrograde mode; and, 0.51 +/- 0.08 mumols min-1 ml-1 in the anterograde mode (P = 0.005). (iv) Glucose production from fructose via the hepatic artery was 2.18 +/- 0.18 mumols min-1 ml-1 in the retrograde mode; and, 1.83 +/- 0.16 mumols min-1 ml-1 in the anterograde mode (P = 0.18). (v) Glucose production and extra oxygen uptake due to fructose infusion did not correlate by a single factor in all perfusion modes. It was concluded that: (a) rates of glycolysis are lower in the periportal area, confirming previous views; (b) extra oxygen uptake due to fructose infusion is higher in the periportal area; (c) a predominance of glucose production in the periportal area could not be demonstrated; and (d) extra oxygen uptake due to fructose infusion is not a precise indicator for glucose synthesis.  相似文献   
2.
Proteomics-based clinical studies have been shown to be promising strategies for the discovery of novel biomarkers of a particular disease. Here, we present a study of hepatocellular carcinoma (HCC) that combines complementary two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography (LC-MS)-based approaches of quantitative proteomics. In our proteomic experiments, we analyzed a set of 14 samples (7 × HCC versus 7 × nontumorous liver tissue) with both techniques. Thereby we identified 573 proteins that were differentially expressed between the experimental groups. Among these, only 51 differentially expressed proteins were identified irrespective of the applied approach. Using Western blotting and immunohistochemical analysis the regulation patterns of six selected proteins from the study overlap (inorganic pyrophosphatase 1 (PPA1), tumor necrosis factor type 1 receptor-associated protein 1 (TRAP1), betaine-homocysteine S-methyltransferase 1 (BHMT)) were successfully verified within the same sample set. In addition, the up-regulations of selected proteins from the complements of both approaches (major vault protein (MVP), gelsolin (GSN), chloride intracellular channel protein 1 (CLIC1)) were also reproducible. Within a second independent verification set (n = 33) the altered protein expression levels of major vault protein and betaine-homocysteine S-methyltransferase were further confirmed by Western blots quantitatively analyzed via densitometry. For the other candidates slight but nonsignificant trends were detectable in this independent cohort. Based on these results we assume that major vault protein and betaine-homocysteine S-methyltransferase have the potential to act as diagnostic HCC biomarker candidates that are worth to be followed in further validation studies.Hepatocellular carcinoma (HCC)1 currently is the fifth most common malignancy worldwide with an annual incidence up to 500 per 100,000 individuals depending on the geographic region investigated. Whereas 80% of new cases occur in developing countries, the incidence increases in industrialized nations including Western Europe, Japan, and the United States (1). To manage patients with HCC, tumor markers are very important tools for diagnosis, indicators of disease progression, outcome prediction, and evaluation of treatment efficacy. Several tumor markers have been reported for HCC, including α-fetoprotein (AFP) (2), Lens culinaris agglutinin-reactive fraction of AFP (AFP-L3) (3), and des-γ-carboxyl prothrombin (DCP) (4). However, none of these tumor markers show 100% sensitivity or specificity, which calls for new and better biomarkers.To identify novel biomarkers of HCC, many clinical studies using “omics”-based methods have been reported over the past decade (56). In particular, the proteomics-based approach has turned out to be a promising one, offering several quantification techniques to reveal differences in protein expression that are caused by a particular disease. In most studies, the well-established 2D-DIGE technique has been applied for protein quantification followed by identification via mass spectrometry (715). Even if the quantification is very accurate and sensitive in this gel-based approach, the relatively high amount of protein sample necessary for protein identification is the major disadvantage of this technique. Several mass-spectrometry-based quantitative studies using labeling-techniques like SILAC (stable isotope labeling by amino acids in cell culture) or iTRAQ (isobaric tags for relative and absolute quantification) have also been carried out for biomarker discovery of HCC (1618). Here, the concomitant protein quantification and identification in a mass spectrometer allows high-throughput analyses. However, such experiments imply additional labeling reactions (in case of iTRAQ) or are limited to tissue culture systems (in case of SILAC). In the latter case, one can overcome the limitation by using the isotope-labeled proteins obtained from tissue culture as an internal standard added to a corresponding tissue sample. This approach is known as CDIT (culture-derived isotope tags) and was applied in a HCC study, very recently (19). Label-free proteomics approaches based on quantification by ion-intensities or spectral counting offer another possibility for biomarker discovery. These approaches are relatively cheap compared with the labeling approaches, because they do not require any labeling reagents and furthermore they allow for high-throughput and sensitive analyses in a mass spectrometer. A quantitative study of HCC using spectral counting has been reported (20), whereas to our knowledge an ion-intensity-based study has not been performed yet. Apart from these quantification strategies, protein alterations in HCC have been studied by MALDI imaging, as well. Here, the authors could show that based on its proteomic signature, hepatocellular carcinoma can be discriminated with high accuracy from liver metastasis samples or other cancer types (21) as well as liver cirrhosis (22). Based on these results, it could be assumed that MALDI imaging might be a promising alternative to standard histological methods in the future.Here, we report a quantitative proteomic study that combines two different techniques, namely the well-established 2D-DIGE approach and a label-free ion-intensity-based quantification via mass spectrometry and liquid chromatography. To our knowledge this is the first time such a combined study was performed with regard to hepatocellular carcinoma. By comparing the results of both studies, we aim to identify high-confident biomarker candidates of HCC, as gel- and LC-MS-based techniques are complementary. To verify the differential protein expressions detected in our proteomic studies we performed additional immunological verifications for selected proteins within two different sample sets (Fig. 1).Open in a separate windowFig. 1.Schematic representation of the applied workflow.  相似文献   
3.
The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor “silent” germline micronuclear genome by a process of “unscrambling” and fragmentation. The tiny macronuclear “nanochromosomes” typically encode single, protein-coding genes (a small portion, 10%, encode 2–8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease.  相似文献   
4.
Diltiazem causes vasoconstriction in the liver when present at high concentrations, an action that is strictly Ca2+-dependent. Diltiazem is also active on energy metabolism. This toxic action could be partly a consequence of hemodynamic effects. In the absence of Ca2+, the hemodynamic effects are no longer present and, consequently, Ca2+-free experiments are useful for distinguishing between hemodynamics-dependent and hemodynamics-independent effects. The experimental system used was the hemoglobin-free perfused rat liver from fed and fasted rats. Diltiazem was infused at various concentrations in the presence and absence of Ca2+. Several metabolic parameters were measured: lactate and pyruvate production (glycolysis), glycogenolysis, oxygen uptake, gluconeogenesis, and the cellular levels of lactate, pyruvate, glucose, AMP, ADP, and ATP. The effects of diltiazem can be divided into three groups: (1) Effects that are strictly dependent on the Ca2+-mediated hemodynamic action. This group comprises inhibition of oxygen uptake at all concentrations (50–500 mol/L) inhibition of lactate, pyruvate, and glucose release at high concentrations; the decrease in cellular ATP; the increase in cellular AMP; and the cellular accumulation of glucose and lactate. (2) Effects that are independent of the hemodynamic action. The most relevant effect of this type is inhibition of gluconeogenesis. (3) Effects that are influenced by Ca2+ but are independent of the hemodynamic effects. This is the typical case of lactate and glucose release from endogenous glycogen, whose stimulation by low diltiazem concentrations is more pronounced in the presence of Ca2+ than in its absence.  相似文献   
5.
The gluconeogenic response in the liver from rats with chronic arthritis to various substrates and the effects of glucagon were investigated. The experimental technique used was the isolated liver perfusion. Hepatic gluconeogenesis in arthritic rats was generally lower than in normal rats. The difference between normal and arthritic rats depended on the gluconeogenic substrate. In the absence of glucagon the following sequence of decreasing differences was found: alanine (-71.8 per cent) reverse similarglutamine (-71.7 per cent)>pyruvate (-60 per cent)>lactate+pyruvate (-44.9 per cent)>xylitol (n.s.=non-significant) reverse similarglycerol (n.s.). For most substrates glucagon increased hepatic gluconeogenesis in both normal and arthritic rats. The difference between normal and arthritic rats, however, tended to diminish, as revealed by the data of the following sequence: alanine (-48.9 per cent) reverse similarpyruvate (-47.6 per cent)>glutamine (-33.8 per cent)>glycerol (n.s.) reverse similarlactate+pyruvate (n.s.) reverse similarxylitol (n.s.). The causes for the reduced hepatic gluconeogenesis in arthritic rats are probably related to: (a) lower activities of key enzymes catalyzing most probably steps preceding phosphoenolpyruvate (e.g. phosphoenolpyruvate carboxykinase, pyruvate carboxylase, etc. ); (b) a reduced availability of reducing equivalents in the cytosol; (c) specific differences in the situations induced by hormones or by the individual substrates. Since glycaemia is almost normal in chronically arthritic rats, it seems that lower gluconeogenesis is actually adapted to the specific needs of these animals.  相似文献   
6.
The heterogeneity of the liver parenchyma in relation to uric acid production from adenosine was investigated using the bivascularly perfused rat liver in the anterograde and retrograde modes. Adenosine was infused in livers from fed rats during 20 min at four different concentrations (20, 50, 100 and 200 M) according to four experimental protocols as follows: (A) anterograde perfusion, with adenosine infusion into the portal vein; (B) anterograde perfusion, with adenosine in the hepatic artery, (C) retrograde perfusion, with adenosine in the hepatic vein; (D) retrograde perfusion, with adenosine in the hepatic artery. With protocols A, B, and D uric acid production from adenosine was always characterized by initial bursts followed by progressive decreases toward smaller steady-states. With protocol C the initial burst was present only when 200 M adenosine was infused. The initial bursts in uric acid production were accompanied by simultaneous increases in the ratio of uric acid production/adenosine uptake rate. These initial bursts are thus representing increments in the production of uric acid that are not corresponded by similar increments in the metabolic uptake rates of adenosine. Global analysis of uric acid production revealed that the final steady-state rates were approximately equal for all infusion rates with protocols A, B and C, but smaller with protocol D. This difference, however, can be explained in terms of the differences in accessible cellular spaces, which are much smaller when protocol D is employed. When the analysis was performed in terms of the extra amounts of uric acid produced during the infusion of adenosine, where the initial bursts are also taken into account, different dose-response curves were found for each experimental protocol. These differences cannot be explained in terms of the accessible cell spaces and they are likely to reflect regional heterogeneities. From the various dose-response curves and from the known characteristics of the microcirculation of the rat liver it can be concluded that the initial bursts in uric acid production are generated in periportal hepatocytes. The reason for this heterogeneity could be related to the metabolic effects of adenosine, especially to oxygen uptake inhibition, which is likely to produce changes in the ATP/AMP ratios.  相似文献   
7.
According to previous reports, adjuvant-induced arthritic rats present reduced activities of the hepatic glucose 6-phosphatase. A kinetic study was done in order to characterize this phenomenon. Microsomes were isolated from livers of arthritic and control rats (Holtzman strain) and the glucose 6-phosphatase was measured at various temperatures (13-37 degrees C) and glucose 6-phosphate concentrations. Irrespective of the temperature, the enzyme from arthritic rats presented a reduction of both V(max) and K(M). Detergent treatment of liver microsomes from control rats increased the activity, but no increase was found when microsomes from arthritic rats were treated in the same way. The mannose 6-phosphatase activity of detergent-treated microsomes from arthritic rats was only 25% of the activity found with detergent-treated microsomes from control rats. Without detergent treatment, the mannose 6-phosphatase activities of both control and arthritic rats were minimal. The activation energy, derived from V(max), was not changed by arthritis. In vivo arthritic rats presented higher hepatic glucose 6-phosphate concentrations, a phenomenon that is consistent with a reduced activity of glucose 6-phosphatase. It was concluded that in arthritic rats, the hydrolase is probably reduced, without a similar change in the translocase activity.  相似文献   
8.

Background  

Glutaminase predominates in periportal hepatocytes and it has been proposed that it determines the glutamine-derived nitrogen flow through the urea cycle. Glutamine-derived urea production should, thus, be considerably faster in periportal hepatocytes. This postulate, based on indirect observations, has not yet been unequivocally demonstrated, making a direct investigation of ureogenesis from glutamine highly desirable.  相似文献   
9.
Considering the intense genetic efforts applied to understanding development, it is surprising that a relatively large class of regulatory genes has newly surfaced. The first microRNA gene and its developmental role were described more than ten years ago, but only recently have we fully appreciated the broad and abundant presence of such genes. MicroRNAs are approximately 22 nucleotide RNAs that use antisense complementarity to inhibit expression of specific mRNAs. Recent studies of restricted expression patterns and functional roles have implicated specific microRNAs in complex genetic pathways regulating embryogenesis, hematopoiesis, neuronal differentiation and Hox-mediated development.  相似文献   
10.
Soils contain highly diverse communities of microorganisms and invertebrates. The trophic interactions between these species are largely unknown. Collembolans form an abundant part of the invertebrate community in soils. A prevailing view is that soil collembolans are generalist feeders on fungi, lichens, fragmented litter and bacteria. However, in laboratory food choice experiments, it has been shown that collembolans preferentially select certain taxa of fungi. To examine this apparent contradiction, we developed a molecular technique based on the analysis of 18S ribosomal DNA (rDNA) sequences to explore the diversity of fungi in soils and in the guts of collembolans. We report that the diversity of fungi found in the natural soil was 33 times higher than that in the guts of the collembolan Protaphorura armata. The data support the view that collembolan species can be highly selective when foraging on fungi in soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号