首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2011年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2002年   1篇
  2000年   1篇
  1999年   3篇
  1991年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Comparative study of virulence of B. anthracis strains harbouring pXO1 and pXO2 plasmids in mice and guinea pigs showed that among six B. anthracis strains, three were 100-1000 times less virulent for guinea pigs. Genetic construction of B. anthracis strains using transduction and conjugation transfer of resident plasmids permitted us to rule out the effects of modified pXO1 and pXO2 replicons and to prove the existence of nonidentified chromosome locuses responsible for the development of an infectious process in anthrax, along with plasmid determinants of virulence.  相似文献   
2.
The activity and the cofactor specificity of xylose reductase and xylitol dehydrogenase were studied in extracts of yeasts from the genera Candida, Kluyveromyces, Pachysolen, Pichia, and Torulopsis grown under microaerobic conditions. It was found that xylitol dehydrogenase in all of the yeast species studied is specific for NAD+; xylose reductase in the xylitol-producing species C. didensiae, C. intermediae, C. parapsilosis, C. silvanorum, C. tropicalis, Kl. fragilis, Kl. marxianus, P. guillermondii, and T. molishiama is specific for NADPH; and xylose reductase in the ethanol-producing species P. stipitis, C. shehatae, and Pa. tannophilus is specific for both NADPH and NADH.  相似文献   
3.
The copulation activity and hybrid formation efficiency have been studied in the xylose-assimilating yeast Pachysolen tannophilus. It was shown that the presence of 2% D-glucose, 0.5% yeast extract, and 2% agarose in the growth medium provided for the highest frequencies of hybrid formation. Atypical hybrid cultures similar in morphophysiological characteristics to native haploid strains of P. tannophilus were revealed in the course of hybridization. The genesis mechanism of such cultures and the reasons for the restricted applicability of hybridological analysis to genetic studies of P. tannophilus are discussed.  相似文献   
4.
The activities of xylitol dehydrogenase and xylose reductase in the yeasts Candida shehatae, C. didensiae, C. intermediae, C. tropicalis, Kluyveromyces marxianus, Pichia stipitis, P. guillermondii, Pachysolen tannophilus, and Torulopsis molishiama were studied at different oxygen transfer rates (OTRs) to the fermentation medium (0, 5, and 140 mmol O2/(l h)). The activities of these enzymes were maximum in the yeasts P. stipitis and C. shehatae. The xylitol dehydrogenase of all the yeasts was NAD+-dependent, irrespective of the intensity of aeration. The xylose reductase of the yeasts C. didensiae, C. intermediae, C. tropicalis, Kl. marxianus, P. guillermondii, and T. molishiama was NADPH-dependent, whereas the xylose reductase of P. stipitis, C. shehatae, and Pa. tannophilus was specific for both NADPH and NADH. The effect of OTR on the activities of the different forms of xylitol dehydrogenase and xylose reductase in xylose-assimilating yeasts is discussed.  相似文献   
5.
The ability to assimilate D-glucose and D-xylose was studied in 21 yeast species of the following genera: Candida, Kluyveromyces, Pachysolen, Pichia, and Torulopsis. All the cultures fermented D-glucose with the formation of ethanol. During the assimilation of D-xylose, ethanol was produced by P. stipitis and C. shehatae, whereas xylitol was produced by C. didensiae, C. intermediae, C. parapsilosis, C. silvanorum, C. tropicalis, K. fragilis, K. marxianus, P. guillermondii, and T. molishiama. The yeast P. tannophilus produced comparable amounts of both alcohols. The possible use of xylose-assimilating yeasts for the production of xy-litol and ethanol is discussed.  相似文献   
6.
Altogether 40 children and adolescents were investigated after injuries of the upper cervical spine using radiograms through the open mouth, functional radiograms of the cervical spine, and functional CT. Various injuries of the ligamentous apparatus of the upper cervical spine were revealed in 31 patients.  相似文献   
7.
8.
Auxotrophic markers of B. anthracis strains differing them from other Bacillus representatives have been determined. Chromosome genes from prototrophic B. cereus strain were transduced into auxotrophic B. anthracis strain. The properties of transductants were studied in order to establish common transfer of chromosomal determinants responsible for realization of various signs. Transduction mating between species resulted in construction of prototroph B. anthracis strains (pX01- pX02+), whose derivatives are characterized by decreased virulence for laboratory animals.  相似文献   
9.
The copulation activity and hybrid formation efficiency have been studied in the xylose-assimilating yeast Pachysolen tannophilus. It was shown that the presence of 2% D-glucose, 0.5% yeast extract, and 2% agarose in the growth medium provided for the highest frequencies of hybrid formation. Atypical hybrid cultures similar in morphophysiological characteristics to native haploid strains of P. tannophilus were revealed in the course of hybridization. The genesis mechanism of such culture and the reasons for the restricted applicability of hybridological analysis to genetic studies of P. tannophilus are discussed.  相似文献   
10.
Conditions favoring differentiation and stabilization of the life cycle of the yeast Pachysolen tannophilus have been studied. When concentrations of the carbon source in the medium were lower than 100 g/l, it was found to be favorable to the mating of vegetative cells, both haploid and diploid. The addition of nitrogen and sulfur sources to the medium influenced the life phases of haploid cells and partially stabilized the vegetative growth of diploid cells. Enrichment of the nutrient medium with potassium, vitamins, and microelements was shown to be necessary for the formation and maturation of conjugated ascospores. Microelements, vitamins, and phosphorus in excessive amounts activated conjugation but did not provide for the distinct phases of formation of unconjugated asci and spores in the diploid cells. Possible reasons for the unstable diplophase in the yeast P. tannophilus are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号