首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   23篇
  339篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   5篇
  2018年   9篇
  2017年   2篇
  2016年   13篇
  2015年   8篇
  2014年   16篇
  2013年   12篇
  2012年   30篇
  2011年   29篇
  2010年   12篇
  2009年   11篇
  2008年   26篇
  2007年   27篇
  2006年   16篇
  2005年   22篇
  2004年   10篇
  2003年   15篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1995年   3篇
  1993年   3篇
  1992年   1篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有339条查询结果,搜索用时 15 毫秒
1.
DNA shuffling is a practical process for directed molecular evolution which uses recombination to dramatically accelerate the rate at which one can evolve genes. Single and multigene traits that require many mutations for improved phenotypes can be evolved rapidly. DNA shuffling technology has been significantly enhanced in the past year, extending its range of applications to small molecule pharmaceuticals, pharmaceutical proteins, gene therapy vehicles and transgenes, vaccines and evolved viruses for vaccines, and laboratory animal models.  相似文献   
2.
Mesenchymal stem cells are multipotent cells that can differentiate into cardiomyocytes and vascular endothelial cells. Here we show, using cell sheet technology, that monolayered mesenchymal stem cells have multipotent and self-propagating properties after transplantation into infarcted rat hearts. We cultured adipose tissue-derived mesenchymal stem cells characterized by flow cytometry using temperature-responsive culture dishes. Four weeks after coronary ligation, we transplanted the monolayered mesenchymal stem cells onto the scarred myocardium. After transplantation, the engrafted sheet gradually grew to form a thick stratum that included newly formed vessels, undifferentiated cells and few cardiomyocytes. The mesenchymal stem cell sheet also acted through paracrine pathways to trigger angiogenesis. Unlike a fibroblast cell sheet, the monolayered mesenchymal stem cells reversed wall thinning in the scar area and improved cardiac function in rats with myocardial infarction. Thus, transplantation of monolayered mesenchymal stem cells may be a new therapeutic strategy for cardiac tissue regeneration.  相似文献   
3.
Cancer is a leading cause of death and alterations of glycosylation are characteristic features of malignant cells. Colorectal cancer is one of the most common cancers and its exact causes and biology are not yet well understood. Here, we compared glycosylation profiles of colorectal tumor tissues and corresponding control tissues of 13 colorectal cancer patients to contribute to the understanding of this cancer. Using MALDI-TOF(/TOF)-MS and 2-dimensional LC-MS/MS we characterized enzymatically released and 2-aminobenzoic acid labeled glycans from glycosphingolipids. Multivariate data analysis revealed significant differences between tumor and corresponding control tissues. Main discriminators were obtained, which represent the overall alteration in glycosylation of glycosphingolipids during colorectal cancer progression, and these were found to be characterized by (1) increased fucosylation, (2) decreased acetylation, (3) decreased sulfation, (4) reduced expression of globo-type glycans, as well as (5) disialyl gangliosides. The findings of our current research confirm former reports, and in addition expand the knowledge of glycosphingolipid glycosylation in colorectal cancer by revealing new glycans with discriminative power and characteristic, cancer-associated glycosylation alterations. The obtained discriminating glycans can contribute to progress the discovery of biomarkers to improve diagnostics and patient treatment.Worldwide, cancer is a leading cause of death. With estimated 1.2 million diagnoses in 2008, colorectal cancer is the third most common cancer in the world and the fourth most common cause of death with an annual mortality of ∼600 000 (1). The exact causes of colorectal cancer are unknown, but different risk factors such as age, polyps, personal and family history, ulcerative colitis, or Crohn''s colitis have been proposed (2). Standard screening procedures include flexible sigmoidoscopy, colonoscopy, and immunological fecal occult blood testing. Each of them has its advantages and drawbacks such as invasiveness or low sensitivity and specificity (3). The method of choice for the treatment of colorectal cancer is surgery and therapeutic decisions are based on the tumor, lymph node, and metastasis staging-system as a prognostic factor (4). Current research has led to improved treatment strategies of colorectal cancer, however, the clinical outcome, the progression of the disease, and the response to the treatment remain variable among individuals. The heterogeneity of colorectal cancer at the molecular level—caused by accumulation of multiple genetic changes—may be one of the main reasons for this variability (5). Genetic factors such as instabilities, but also expression levels (6) can explain part of the cancer biology, but glycomics is gaining importance to complement the overall picture as aberrant glycosylation of proteins and lipids has been shown to be correlated with disease and malignancy (7, 8).Glycosylation is involved in many biological processes and especially its functional role in cellular interaction with respect to adhesion, cell growth, and signaling is prone to be affected in cancer progression, invasion, and metastasis (9). Several cancer-associated alterations in protein glycosylation have been reported: (1) increased branching of N-glycans, (2) higher density of O-glycans, and (3) incomplete synthesis of glycans. More particularly, an increased or induced expression of GlcNAc transferase V resulting in N-glycan structures with β1–6GlcNAc antennae (5, 10), and the expression of (sialyl) Tn-antigens (11) as aberrant O-glycosylation have been reported (10).Altered glycosphingolipid (GSL)1 glycosylation of the cell surface membrane during malignancy can affect cell recognition, adhesion, and signal transduction (12) and is found to reflect: (1) incomplete synthesis with or without precursor accumulation, (2) neosynthesis (9), (3) increased sialylation, and (4) increased fucosylation (13). In many cancers, including colorectal cancer, an overexpression of the (sialyl) Lewis X antigen (10, 14) and the expression of (sialyl) Lewis A (15) are considered to be related to malignant transformation—reflecting incomplete synthesis of sialyl 6-sulfo Lewis X and disialyl Lewis A (16) as well as neosynthesis (17). Studies on gangliosides showed an overexpression of these sialylated GSLs in human malignant melanoma (18). Furthermore, the involvement of gangliosides in cell adhesion and motility was reported, which contributes to tumor metastasis (19). Specifically, the gangliosides GD3 (Hex2NeuAc2ceramide) and GM2 (Hex2HexNAc1NeuAc1ceramide) have been found to be associated with tumor-angiogenesis (19). The up-regulation of fucosyltransferases in cancer was shown to cause a higher degree of fucosylation in malignant tissues (20) and Moriwaki et al. proposed that the increase in the fucosylation for GSLs was an early event in cancer (21). Misonou et al. investigated glycans derived from GSLs in colorectal cancer tissues showing aberrant glycan structures based on linkage differences as well as increased sialylation and fucosylation compared with control tissue (22), which is in line with observed changes in GSL glycosylation with regard to cancer progression (9, 13).Recently, we investigated the N-glycosylation profiles of colorectal tumors and correlating control tissues for biomarker discovery. Statistical analyses revealed an increase of sulfated glycan structures as well as paucimannosidic glycans and glycans containing sialylated Lewis type epitopes in the tumor tissue, whereas structures with bisecting GlcNAc were found to be decreased in malignancy (23). To further progress the understanding of colorectal cancer biology and the improvement of diagnostic tools and patient treatment, we complemented this recent study on N-glycosylation by an investigation of the glycosphingolipid-derived glycans (named GSL-glycans in the following) from frozen tumor tissues and corresponding control tissues from the same 13 colorectal cancer patients. GSL-glycans were enzymatically released, labeled with 2-aminobenzoic acid (AA) and analyzed by hydrophilic interaction liquid chromatography (HILIC) with fluorescence detection as well as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Employing multivariate statistical analysis, this approach revealed an intricate GSL-glycosylation pattern of tumor tissues and specific glycosylation differences in comparison to the corresponding control tissue.  相似文献   
4.

Background

Culicoides biting midges (Diptera: Ceratopogonidae) are the biological vectors of globally significant arboviruses of livestock including bluetongue virus (BTV), African horse sickness virus (AHSV) and the recently emerging Schmallenberg virus (SBV). From 2006–2009 outbreaks of BTV in northern Europe inflicted major disruption and economic losses to farmers and several attempts were made to implicate Palaearctic Culicoides species as vectors. Results from these studies were difficult to interpret as they used semi-quantitative RT-PCR (sqPCR) assays as the major diagnostic tool, a technique that had not been validated for use in this role. In this study we validate the use of these assays by carrying out time-series detection of BTV RNA in two colony species of Culicoides and compare the results with the more traditional isolation of infectious BTV on cell culture.

Methodology/Principal Findings

A BTV serotype 1 strain mixed with horse blood was fed to several hundred individuals of Culicoides sonorensis (Wirth & Jones) and C. nubeculosus (Mg.) using a membrane-based assay and replete individuals were then incubated at 25°C. At daily intervals 25 Culicoides of each species were removed from incubation, homogenised and BTV quantified in each individual using sqPCR (Cq values) and virus isolation on a KC-C. sonorensis embryonic cell line, followed by antigen enzyme-linked immunosorbent assay (ELISA). In addition, comparisons were also drawn between the results obtained with whole C. sonorensis and with individually dissected individuals to determine the level of BTV dissemination.

Conclusions/Significance

Cq values generated from time-series infection experiments in both C. sonorensis and C. nubeculosus confirmed previous studies that relied upon the isolation and detection of infectious BTV. Implications on the testing of field-collected Culicoides as potential virus vectors by PCR assays and the use of such assays as front-line tools for use in diagnostic laboratories in this role are discussed.  相似文献   
5.
6.

Background

Radiographic evaluation for patients with scoliosis using Cobb method is the current gold standard, but radiography has radiation hazards. Several groups have recently demonstrated the feasibility of using 3D ultrasound for the evaluation of scoliosis. Ultrasound imaging is radiation-free, comparatively more accessible, and inexpensive. However, a reliable and valid 3D ultrasound system ready for clinical scoliosis assessment has not yet been reported. Scolioscan is a newly developed system targeted for scoliosis assessment in clinics by using coronal images of spine generated by a 3D ultrasound volume projection imaging method. The aim of this study is to test the reliability of spine deformity measurement of Scolioscan and its validity compared to the gold standard Cobb angle measurements from radiography in adolescent idiopathic scoliosis (AIS) patients.

Methods

Prospective study divided into two stages: 1) Investigation of intra- and inter- reliability between two operators for acquiring images using Scolioscan and among three raters for measuring spinal curves from those images; 2) Correlation between the Cobb angle obtained from radiography by a medical doctor and the spine curve angle obtained using Scolioscan (Scolioscan angle). The raters for ultrasound images and the doctors for evaluating radiographic images were mutually blinded. The two stages of tests involved 20 (80 % females, total of 26 angles, age of 16.4?±?2.7 years, and Cobb angle of 27.6?±?11.8°) and 49 (69 % female, 73 angles, 15.8?±?2.7 years and 24.8?±?9.7°) AIS patients, respectively. Intra-class correlation coefficients (ICC) and Bland-Altman plots and root-mean-square differences (RMS) were employed to determine correlations, which interpreted based on defined criteria.

Results

We demonstrated a very good intra-rater and intra-operator reliability for Scolioscan angle measurement with ICC larger than 0.94 and 0.88, respectively. Very good inter-rater and inter-operator reliability was also demonstrated, with both ICC larger than 0.87. For the thoracic deformity measurement, the RMS were 2.5 and 3.3° in the intra- and inter-operator tests, and 1.5 and 3.6° in the intra- and inter-rater tests, respectively. The RMS differences were 3.1, 3.1, 1.6, 3.7° in the intra- and inter-operator and intra- and inter-rater tests, respectively, for the lumbar angle measurement. Moderate to strong correlations (R2?>?0.72) were observed between the Scolioscan angles and Cobb angles for both the thoracic and lumbar regions. It was noted that the Scolioscan angle slightly underestimated the spinal deformity in comparison with Cobb angle, and an overall regression equation y?=?1.1797x (R2?=?0.76) could be used to translate the Scolioscan angle (x) to Cobb angle (y) for this group of patients. The RMS difference between Scolioscan angle and Cobb angle was 4.7 and 6.2°, with and without the correlation using the overall regression equation.

Conclusions

We showed that Scolioscan is reliable for measuring coronal deformity for patients with AIS and appears promising in screening large numbers of patients, for progress monitoring, and evaluation of treatment outcomes. Due to it being radiation-free and relatively low-cost, Scolioscan has potential to be widely implemented and may contribute to reducing radiation dose during serial monitoring.
  相似文献   
7.

Background

Patients with adolescent idiopathic scoliosis (AIS) frequently receive x-ray imaging at diagnosis and subsequent follow monitoring. The ionizing radiation exposure has accumulated through their development stage and the effect of radiation to this young vulnerable group of patients is uncertain. To achieve the ALARA (as low as reasonably achievable) concept of radiation dose in medical imaging, a slot-scanning x-ray technique by the EOS system has been adopted and the radiation dose using micro-dose protocol was compared with the standard digital radiography on patients with AIS.

Methods

Ninety-nine participants with AIS underwent micro-dose EOS and 33 underwent standard digital radiography (DR) for imaging of the whole spine. Entrance-skin dose was measured using thermoluminescent dosimeters (TLD) at three regions (i.e. dorsal sites at the level of sternal notch, nipple line, symphysis pubis). Effective dose and organ dose were calculated by simulation using PCXMC 2.0. Data from two x-ray systems were compared using independent-samples t-test and significance level at 0.05. All TLD measurements were conducted on PA projection only. Image quality was also assessed by two raters using Cobb angle measurement and a set of imaging parameters for optimization purposes.

Results

Entrance-skin dose from micro-dose EOS system was 5.9–27.0 times lower at various regions compared with standard DR. The calculated effective dose was 2.6?±?0.5 (μSv) and 67.5?±?23.3 (μSv) from micro-dose and standard DR, respectively. The reduction in the micro-dose was approximately 26 times. Organ doses at thyroid, lung and gonad regions were significantly lower in micro-dose (p?<?0.001). Data were further compared within the different gender groups. Females received significantly higher (p?<?0.001) organ dose at ovaries compared to the testes in males. Patients with AIS received approximately 16–34 times lesser organ dose from micro-dose x-ray as compared with the standard DR. There was no significant difference in overall rating of imaging quality between EOS and DR. Micro-dose protocol provided enough quality to perform consistent measurement on Cobb angle.

Conclusions

Entrance-skin dose, effective dose and organ dose were significantly reduced in micro-dose x-ray. The effective dose of a single micro-dose x-ray (2.6 μSv) was less than a day of background radiation. As AIS patients require periodic x-ray follow up for surveillance of curve progression, clinical use of micro-dose x-ray system is beneficial for these young patients to reduce the intake of ionizing radiation.
  相似文献   
8.

Background

Prenatal screening for Down Syndrome (DS) would benefit from an increased number of biomarkers to improve sensitivity and specificity. Improving sensitivity and specificity would decrease the need for potentially risky invasive diagnostic procedures.

Results

We have performed an in depth two-dimensional difference gel electrophoresis (2D DIGE) study to identify potential biomarkers. We have used maternal plasma samples obtained from first and second trimesters from mothers carrying DS affected fetuses compared with mothers carrying normal fetuses. Plasma samples were albumin/IgG depleted and expanded pH ranges of pH 4.5 - 5.5, pH 5.3 - 6.5 and pH 6 - 9 were used for two-dimensional gel electrophoresis (2DE). We found no differentially expressed proteins in the first trimester between the two groups. Significant up-regulation of ceruloplasmin, inter-alpha-trypsin inhibitor heavy chain H4, complement proteins C1s subcomponent, C4-A, C5, and C9 and kininogen 1 were detected in the second trimester in maternal plasma samples where a DS affected fetus was being carried. However, ceruloplasmin could not be confirmed as being consistently up-regulated in DS affected pregnancies by Western blotting.

Conclusions

Despite the in depth 2DE approach used in this study the results underline the deficiencies of gel-based proteomics for detection of plasma biomarkers. Gel-free approaches may be more productive to increase the number of plasma biomarkers for DS for non-invasive prenatal screening and diagnosis.  相似文献   
9.
The host-lysis-inducing functions of phi X174 protein E and MS2 protein L were recently shown to reside on the N-terminal and C-terminal halves of the two respective lysis proteins. In the present study it is shown that the small lysis proteins encoded in various colicinogenic plasmids share local sequence similarities and certain structural characteristics with the essential peptides of their coliphage-coded counterparts. Despite their dissimilar sizes and origins, it is suggested that the colicinogenic lysis proteins are functionally analogous and evolutionarily related to those of icosahedral single- stranded DNA and RNA phages.   相似文献   
10.
Several studies suggest, that the snail Lymnaea stagnalis contains glycoproteins whose oligosaccharide side chains have structural features not commonly found in mammalian glycoproteins. In this study, prostate glands of L. stagnalis were incubated in media containing either [(3)H]-mannose, [(3)H]-glucosamine, or [(3)H]-galactose, and the metabolically radiolabeled protein-bound oligosaccharides were analyzed. The newly synthesized diantennary-like complex-type asparagine-linked chains contained a considerable amount of glucose, next to mannose, GlcNAc, fucose, galactose, and traces of GalNAc. Since glucose has not been found before as a constituent of diantennary N-linked glycans as far as we know, we assayed the prostate gland of L. stagnalis for a potential glucosyltransferase activity involved in the biosynthesis of such structures. We report here, that the prostate gland of L. stagnalis contains a beta1-->4-glucosyltransferase activity that transfers glucose from UDP-glucose to acceptor substrates carrying a terminal N-acetylglucosamine. The enzyme prefers substrates carrying a terminal GlcNAc that is beta6 linked to a Gal or a GalNAc, structures occurring in O-linked glycans, or a GlcNAc that is beta2 linked to mannose, as is present in N-linked glycans. Based on combined structural and enzymatic data, we propose that the novel beta1-->4-gluco-syltransferase present in the prostate gland may be involved in the biosynthesis of Glcbeta1-->4GlcNAc units in complex-type glycans, in particular in N-linked diantennary glycans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号