首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   4篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2008年   1篇
  2006年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
排序方式: 共有18条查询结果,搜索用时 281 毫秒
1.
Abiotic stresses greatly influence plant growth and productivity. While glycosyltransferases are widely distributed in plant kingdom, their biological roles in response to abiotic stresses are largely unknown. In this study, a novel Arabidopsis glycosyltransferase gene UGT85A5 was identified as significantly induced by salt stress. Ectopic expression of UGT85A5 in tobacco enhanced the salt stress tolerance in the transgenic plants. There were higher seed germination rates, better plant growth and less chlorophyll loss in transgenic lines compared to wild type plants under salt stress. This enhanced tolerance of salt stress was correlated with increased accumulations of proline and soluble sugars, but with decreases in malondialdehyde accumulation and Na+/K+ ratio in UGT85A5-expressing tobacco. Furthermore, during salt stress, expression of several carbohydrate metabolism-related genes including those for sucrose synthase, sucrose-phosphate synthase, hexose transporter and a group2 LEA protein were obviously upregulated in UGT85A5-expressing transgenic plants compared with wild type controls. Thus, these findings suggest a specific protective role of this glycosyltransferase against salt stress and provide a genetic engineering strategy to improve salt tolerance of crops.  相似文献   
2.
Wang B  Jin SH  Hu HQ  Sun YG  Wang YW  Han P  Hou BK 《The New phytologist》2012,194(3):666-675
? Family 1 glycosyltransferases comprise the greatest number of glycosyltransferases found in plants. The widespread occurrence and diversity of glycosides throughout the plant kingdom underscore the importance of these glycosyltransferases. ? Here, we describe the identification and characterization of a late-flowering Arabidopsis (Arabidopsis thaliana) mutant, in which a putative family 1 glycosyltransferase gene, UGT87A2, was disrupted. The role and possible mechanism of UGT87A2 in the regulation of flowering were analyzed by molecular, genetic and cellular approaches. ? The ugt87a2 mutant exhibited late flowering in both long and short days, and its flowering was promoted by vernalization and gibberellin. Furthermore, the mutant flowering phenotype was rescued by the wild-type UGT87A2 gene in complementation lines. Interestingly, the expression of the flowering repressor FLOWERING LOCUS C was increased substantially in the mutant, but decreased to the wild-type level in complementation lines, with corresponding changes in the expression levels of the floral integrators and floral meristem identity genes. The expression of UGT87A2 was developmentally regulated and its protein products were distributed in both cytoplasm and nucleus. ? Our findings imply that UGT87A2 regulates flowering time via the flowering repressor FLOWERING LOCUS C. These data highlight an important role for the family 1 glycosyltransferases in the regulation of plant flower development.  相似文献   
3.
定点整合抗虫基因到油菜叶绿体基因组并获得转基因植株   总被引:16,自引:1,他引:15  
以基因枪法进行了油菜叶绿体基因组的定点转化,载体pNRAB携带抗壮观霉素的筛选标记基因aadA和抗虫基因cry1Aα10,基因的两侧被添加了可用于同源重组的叶绿体DNA序列,基因枪轰击过的油菜子叶柄经植株再生和壮观霉素筛选,获得了36株抗性植株,PCR检测和Southern杂交显示,其中4株的叶绿体基因组已被转化,外源基因已被定点整合进叶绿体基因组的rps7和ndhB基因之间。用转基因植株的叶片饲喂二龄小菜蛾,1周后幼虫死亡率达33%-47%,存活幼虫的生长明显减慢,转基因油菜的叶片受害较轻。  相似文献   
4.
5.
Recent studies have shown that global metabolic reprogramming is a common event in plant innate immunity; however, the relevant molecular mechanisms remain largely unknown. Here, we identified a pathogen-induced glycosyltransferase, UGT73C7, that plays a critical role in Arabidopsis disease resistance through mediating redirection of the phenylpropanoid pathway. Loss of UGT73C7 function resulted in significantly decreased resistance to Pseudomonas syringae pv. tomato DC3000, whereas constitutive overexpression of UGT73C7 led to an enhanced defense response. UGT73C7-activated immunity was demonstrated to be dependent on the upregulated expression of SNC1, a Toll/interleukin 1 receptor-type NLR gene. Furthermore, in vitro and in vivo assays indicated that UGT73C7 could glycosylate p-coumaric acid and ferulic acid, the upstream metabolites in the phenylpropanoid pathway. Mutations that lead to the loss of UGT73C7 enzyme activities resulted in the failure to induce SNC1 expression. Moreover, glycosylation activity of UGT73C7 resulted in the redirection of phenylpropanoid metabolic flux to biosynthesis of hydroxycinnamic acids and coumarins. The disruption of the phenylpropanoid pathway suppressed UGT73C7-promoted SNC1 expression and the immune response. This study not only identified UGT73C7 as an important regulator that adjusts phenylpropanoid metabolism upon pathogen challenge, but also provided a link between phenylpropanoid metabolism and an NLR gene.  相似文献   
6.
Cytokinins are a class of phytohormones that play a crucial role in plant growth and development. The gene UGT76C2 encoding cytokinin N-glucosyltransferase of Arabidopsis thaliana has been previously identified. To determine the in planta role of UGT76C2 in cytokinin metabolism and response, we analyzed the phenotypes of its loss-of-function mutant (ugt76c2) and its overexpressors. The accumulation level of the cytokinin N-glucosides was significantly decreased in ugt76c2, but substantially increased in UGT76C2 overexpressors compared with the wild type. When treated with exogenously applied cytokinin, ugt76c2 showed more sensitivity and UGT76C2 overexpressors showed less sensitivity to cytokinin in primary root elongation, lateral root formation, Chl retention and anthocyanin accumulation. Under normal growth conditions ugt76c2 had smaller seeds than the wild type, with accompanying lowered levels of active and N-glucosylated cytokinin forms. The expression levels of cytokinin-related genes such as AHK2, AHK3, ARR1, IPT5 and CKX3 were changed in ugt76c2, suggesting homeostatic control of cytokinin activity. Studies of spatiotemporal expression patterns showed that UGT76C2 was expressed at a relatively higher level in the seedling and developing seed. In their entirety, our data, based mainly on this comparison and opposite phenotypes of knockout and overexpressors, strongly suggest that UGT76C2 is involved in cytokinin homeostasis and cytokinin response in planta through cytokinin N-glucosylation.  相似文献   
7.
Auxin is one type of phytohormones that plays important roles in nearly all aspects of plant growth and developmental processes. The glycosylation of auxins is considered to be an essential mechanism to control the level of active auxins. Thus, the identification of auxin glycosyltransferases is of great significance for further understanding the auxin regulation. In this study, we biochemically screened the group L of Arabidopsis thaliana glycosyltransferase superfamily for enzymatic activity toward auxins. UGT74D1 was identified to be a novel auxin glycosyltransferase. Through HPLC and LC-MS analysis of reaction products in vitro by testing eight substrates including auxins and other compounds, we found that UGT74D1 had a strong glucosylating activity toward indole-3-butyric acid [IBA], indole-3-propionic acid [IPA], indole-3-acetic acid [IAA] and naphthaleneacetic acid [NAA], catalyzing them to form corresponding glucose esters. Biochemical characterization showed that this enzyme had a maximum activity in HEPES buffer at pH 6.0 and 37°C. In addition, the enzymatic activity analysis of crude protein and the IBA metabolite analysis from transgenic Arabidopsis plants overexpressing UGT74D1 gene were also carried out. Experimental results indicated that over-production of the UGT74D1 in plants indeed led to increased level of the glucose conjugate of IBA. Moreover, UGT74D1 overexpression lines displayed curling leaf phenotype, suggesting a physiological role of UGT74D1 in affecting the activity of auxins. Our current data provide a new target gene for further genetic studies to understand the auxin regulation by glycosylation in plants.  相似文献   
8.
用附加细胞分裂素及其糖苷物的MS培养基,垂直培养拟南芥并测定根的伸长,以此分析细胞分裂素及其糖苷物的生物学活性的结果表明,细胞分裂素的N-糖苷物几乎完全失去细胞分裂素活性,而D-糖苷仍具有细胞分裂素活性。推测两类糖苷物对植物体内细胞分裂素活性可能有不同的调控作用。  相似文献   
9.
Chen FG  Hou BK 《遗传》2012,34(4):503-508
There are three classical problems at the chromosome level in cytogenetics, namely the formation mechanisms and effects of Barr body, polytenic chromosome, and lampbrush chromosome. Teachers and researchers keep sustaining attention to the Barr body because of the relationships between Barr body and the X chromosome dosage compensation effect in mammals, the human sex identification, and some human diseases. In our genetics teaching practice, we tried the case-based teaching method. We introduced the classical problems and research progress of the Barr body, as a line, into partial sections of our genetics teaching contents such as sex-linked genetic analysis, eukaryotic gene expression regulation, cancer genetic analysis, and genetic experiments. Finally, it will form a comprehensive summary of related knowledge of genetics through class discussion on the Barr body. We found that this teaching method can not only optimize the teaching contents of genetics, consolidate and widen students' basic knowledge, and help student to form the systemic and developmental views of a classical genetics problem, but also inspire students' interest in life sciences. Good teaching results have been achieved.  相似文献   
10.
侯丙凯  陈正华 《植物学报》2000,17(5):385-393
植物抗虫基因工程为防治农业害虫提供了一条崭新途径。本文对植物抗虫基因工程近年来所取得的某些研究进展,包括目前已发现和利用的抗虫基因、提高抗虫基因在植物体内表达的方法以及防止或延缓害虫产生抗性的策略等方面进行了综合评述,并对植物抗虫基因工程中有待解决的问题和发展前景提出了自己的看法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号