首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   6篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2006年   3篇
  2005年   2篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1987年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
Plant cell suspension cultures represent good model systems applicable for both basic research and biotechnological purposes. Nevertheless, it is widely known that a prolonged in vitro cultivation of plant cells is associated with genetic and epigenetic instabilities, which may limit the usefulness of plant lines. In this study, the age-dependent epigenetic and physiological changes in an asynchronous Arabidopsis T87 cell culture were examined. A prolonged cultivation period was found to be correlated with a decrease in the proliferation rate and a simultaneous increase in the expression of senescence-associated genes, indicating that the aging process started at the late growth phase of the culture. In addition, increases in the heterochromatin-specific epigenetic markers, i.e., global DNA methylation, H3K9 dimethylation, and H3K27 trimethylation, were observed, suggesting the onset of chromatin condensation, a hallmark of the early stages of plant senescence. Although the number of live cells decreased with an increase in the age of the culture, the remaining viable cells retained a high potential to efficiently perform photosynthesis and did not exhibit any symptoms of photosystem II damage.  相似文献   
2.
Although cadmium is a well-established human carcinogen, the mechanisms by which it induces cancer are poorly understood. It is suggested that cadmium-mediated carcinogenesis may include the modulation of gene expression and signal-transduction pathways, interference with antioxidant enzymes, inhibition of DNA repair and DNA methylation, and induction of apoptosis. Nevertheless, no predominant mechanism playing a role in metal-induced carcinogenesis has been reported. In the present study, we used a pig Robertsonian translocation model, which is a cross between a wild boar and domestic pig resulting in Robertsonian translocation (37,XX,der15;17 or 37,XY,der15;17), to determine the role of cadmium sulfate in the modulation of genomic DNA-methylation status and the induction of aneuploidy. We found a cadmium-mediated increase in aneuploidy within chromosome group A and C, but not within chromosome group D containing the translocated chromosome der15,17 which indicates that translocated chromosome is not more prone to chromosomal aberrations than are other chromosomes. We suggest that cadmium-induced aneuploidy (up to 5-μM concentration) may be mediated by global DNA hypermethylation as monitored with HPLC and 5-mdC immunostaining. In addition, the cyto- and genotoxic potential of cadmium was evaluated. Cadmium sulfate was able to induce apoptosis, inhibit cell-proliferative status and expression of nucleolar organizer regions (NORs), and increase oxidative DNA damage (8-oxoG content).  相似文献   
3.
Neuronal signal integration and information processing in cortical neuronal networks critically depend on the organization of synaptic connectivity. Because of the challenges involved in measuring a large number of neurons, synaptic connectivity is difficult to determine experimentally. Current computational methods for estimating connectivity typically rely on the juxtaposition of experimentally available neurons and applying mathematical techniques to compute estimates of neural connectivity. However, since the number of available neurons is very limited, these connectivity estimates may be subject to large uncertainties. We use a morpho-density field approach applied to a vast ensemble of model-generated neurons. A morpho-density field (MDF) describes the distribution of neural mass in the space around the neural soma. The estimated axonal and dendritic MDFs are derived from 100,000 model neurons that are generated by a stochastic phenomenological model of neurite outgrowth. These MDFs are then used to estimate the connectivity between pairs of neurons as a function of their inter-soma displacement. Compared with other density-field methods, our approach to estimating synaptic connectivity uses fewer restricting assumptions and produces connectivity estimates with a lower standard deviation. An important requirement is that the model-generated neurons reflect accurately the morphology and variation in morphology of the experimental neurons used for optimizing the model parameters. As such, the method remains subject to the uncertainties caused by the limited number of neurons in the experimental data set and by the quality of the model and the assumptions used in creating the MDFs and in calculating estimating connectivity. In summary, MDFs are a powerful tool for visualizing the spatial distribution of axonal and dendritic densities, for estimating the number of potential synapses between neurons with low standard deviation, and for obtaining a greater understanding of the relationship between neural morphology and network connectivity.  相似文献   
4.
5.
This study deals with the morphofunctional influence of 72 h exposure to a 6 mT static magnetic field (SMF) during differentiation induced by 50 ng/ml 12‐O‐tetradecanoyl‐13‐phorbol acetate (TPA) in human leukaemia U937 cells. The cell morphology of U937 cells was investigated by optic and electron microscopy. Specific antibodies and/or molecules were used to label CD11c, CD14, phosphatidylserine, F‐actin and to investigate the distribution and activity of lysosomes, mitochondria and SER. [Ca2+]i was evaluated with a spectrophotometer. The degree of differentiation in SMF‐exposed cells was lower than that of non‐exposed cells, the difference being exposure time‐dependent. SMF‐exposed cells showed cell shape and F‐actin modification, inhibition of cell attachment, appearance of membrane roughness and large blebs and impaired expression of specific macrophagic markers on the cell surface. The intracellular localization of SER and lysosomes was only partially affected by exposure. A significant localization of mitochondria with an intact membrane potential at the cell periphery in non‐exposed, TPA‐stimulated cells was observed; conversely, in the presence of SMF, mitochondria were mainly localised near the nucleus. In no case did SMF exposure affect cell viability. The sharp intracellular increase of [Ca2+]i could be one of the causes of the above‐described changes. Bioelectromagnetics 30:352–364, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
6.
The TZM-bl cell line that is commonly used to assess neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) was recently reported to be contaminated with an ecotropic murine leukemia virus (MLV) (Y. Takeuchi, M. O. McClure, and M. Pizzato, J. Virol. 82:12585-12588, 2008), raising questions about the validity of results obtained with this cell line. Here we confirm this observation and show that HIV-1 neutralization assays performed with a variety of serologic reagents in a similar cell line that does not harbor MLV yield results that are equivalent to those obtained in TZM-bl cells. We conclude that MLV contamination has no measurable effect on HIV-1 neutralization when TZM-bl cells are used as targets for infection.It was recently reported that TZM-bl cells, which are commonly used to assess neutralizing antibodies (Abs) against human immunodeficiency virus type 1 (HIV-1), are contaminated with an ecotropic murine leukemia virus (MLV) (22). TZM-bl (also called JC.53bl-13) is a HeLa cell derivative that was engineered by amphotropic retroviral transduction to express CD4 and CCR5 (17) and was further engineered with an HIV-1-based vector to contain Tat-responsive reporter genes for firefly luciferase (Luc) and Escherichia coli β-galactosidase (24). These engineered features made TZM-bl cells highly susceptible to HIV-1 infection in a readily quantifiable assay for neutralizing Abs. Many published studies used this cell line for assessments of HIV-1 neutralization; these include several recent reports describing the magnitude, breadth, and epitope specificity of the neutralizing Ab response in infected individuals (14, 18-20), neutralization escape (25), and the neutralization phenotype of transmitted/founder viruses (10). TZM-bl cells are also gaining popularity for assessments of vaccine-elicited neutralizing Ab responses (13). The validity of these and other published results, together with a rationale for the continued use of TZM-bl cells in assessing neutralizing Abs against HIV-1, are very dependent on establishing to what extent, if any, MLV contamination affects the outcome of the assay.It was suggested that ecotropic MLV entered TZM-bl cells via the progenitor JC.53 cell line as an amphotropic MLV pseudotype (22). In this regard, JC.53 cells were constructed from HeLa cells in two stages by using ping-pong technology to amplify the pSFF vector derived from the replication-defective and highly truncated Friend spleen focus-forming virus (3). When used with this vector, this procedure has previously resulted in stable vector expression (17) without formation of replication-competent MLV recombinants (8, 11). A panel of HeLa-CD4 clones was made that express different amounts of CD4 and where the high-expression HI-J clone was used to make a derivative panel of clones (termed JC), including JC.53, that expressed diverse levels of CCR5 (9, 16, 17). In addition, the HeLa-CD4 clone HI-R that expressed low levels of CD4 was used to make another panel of CCR5-expressing clones (termed RC). To investigate this newly reported issue, cell extracts from these clonal panels and from TZM-bl cells were analyzed for MLV Gag antigens by Western immunoblotting. Representative data, as shown in Fig. Fig.1A,1A, confirm that JC.53 and TZM-bl cells express MLV Gag antigens, whereas the progenitor HI-J clone of HeLa-CD4 cells and many but not all of the other HeLa-CD4/CCR5 clones in the JC panel lack MLV antigens.Open in a separate windowFIG. 1.Characterization of HeLa clones for MLV Gag expression, HIV-1 susceptibility, and cell surface expression of HIV-1 fusion receptors. (A) MLV Gag antigen expression in HeLa cells and derivative clones expressing CD4 or CD4 and CCR5. Cell lysates were prepared from the cell clones and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting with Abs to MLV Gag antigens (upper blot). The lysates were also probed with anti-tubulin antibodies (lower blot). Lane 1, HeLa cells; lanes 2 and 3, HeLa CD4 clones HI-R and HI-J, respectively; lanes 4, 5, and 6, HeLa-CD4/CCR5 clones JC.10, JC.48, and JC.53, respectively; lane 7, TZM-bl cells; lane 8, psi-2 packaging cells positive for MLV Gag. (B) HIV-1 infectivity on the HeLa-CD4/CCR5 JC panel. Target cells were infected with HIV-1 isolate JRCSF that had been produced from clone JC.53 cells (black) or with JRCSF produced from transfected HEK293T cells (red). The target cells were also infected with the JR-FL isolate produced from peripheral blood mononuclear cells (PBMC; green). The HeLa-CD4/CCR5 target cells had a CCR5 expression range of 2 × 103 (clone JC.10) to 1.3 × 105 (clones JC.53 and TZM-bl) CCR5 molecules/cell. Each set of three data points at a given CCR5 expression level represents a single HeLa-CD4/CCR5 JC clone. None of the HIV-1 isolates was able to infect HeLa-CD4 cells lacking CCR5. The blue asterisks indicate clones that are negative for MLV Gag proteins. Clones JC.48 (used for subsequent infection and neutralization assays) and JC.53 (progenitor of TZM-bl cells) are specifically labeled. (C) Surface expression of CD4, CCR5, and CXCR4 on TZM-bl and JC.48 cells was assessed by flow cytometry using the same stocks of cells that were used in infection and neutralization assays in Fig. Fig.2.2. Surface staining was performed with phycoerythrin-conjugated mouse monoclonal Abs to CD4, CCR5 (CD195), and CXCR4 (CD184). Background staining was performed with isotype-matched control Abs. All Abs for flow cytometry were purchased from BD Biosciences Pharmingen (San Diego, CA). Results are shown as the mean fluorescence intensity (MFI) of positive cells. Most cells (>90%) stained positive in each case.Initial studies of HI-R cells and other clonal panels that were made using these methods also suggested a lack of MLV antigens (data not shown). We then determined the titers of replication-competent HIV-1JRCSF preparations using JC.53 and TZM-bl cells as well as other representative HeLa-CD4/CCR5 clones in the JC panel. The results are plotted in Fig. Fig.1B1B as a function of cellular CCR5 content. Clones having more than a low threshold level of ∼8,000 CCR5/cell were equally susceptible to infection regardless of whether they contained MLV antigens, clearly demonstrating that HIV-1JRCSF titers were not significantly affected by MLV. As expected, titers obtained with JC.53 and TZM-bl cells were also equivalent. In addition, these results demonstrate that HIV-1JRCSF preparations made in JC.53 cells and in cells lacking MLV antigens (i.e., HEK293T cells and human peripheral blood mononuclear cells) were unable to infect HeLa cells lacking CCR5. The results in Fig. Fig.1B1B were expected because previous studies demonstrated that ecotropic MLVs cannot infect human cells or even bind to the human CAT-1 receptor paralog (1, 6, 21, 23). Moreover, it has been shown that ecotropic host range MLVs do not interfere with superinfection by any retrovirus capable of infecting human cells, including gibbon ape leukemia virus, amphotropic MLV, baboon endogenous virus, and feline leukemia virus subgroup C (21). In view of the report by Takeuchi et al. (22), we were surprised to find that JC.53 and TZM-bl cells express very small amounts of ecotropic MLV Env glycoproteins, as indicated by immunofluorescence microscopy and by their resistance to complement-dependent killing by a cytotoxic antiserum specific for MLV envelope glycoproteins (6). Nevertheless, the cell clones that contained MLV Gag all released ecotropic host range virions that replicated in murine NIH 3T3 cells but not in human cells (data not shown).To determine whether MLV affects the measurement of neutralizing Abs in TZM-bl cells, parallel assays were performed in TZM-bl and JC.48 cells; these latter cells were determined to be MLV free by Western blot analysis (Fig. (Fig.1)1) and by an inability to transfer MLV infection to NIH 3T3 cells (data not shown). Because JC.48 cells express CCR5 at somewhat lower levels than JC.53 cells (∼2-fold lower; Fig. Fig.1B),1B), it may be expected that they would be less susceptible to HIV-1 infection than are TZM-bl cells. Differences in susceptibility to HIV-1 infection may require the use of adjusted virus doses to achieve equivalent assay performance when measuring neutralizing Abs. Indeed, levels of CD4 and CCR5 were approximately twofold lower on JC.48 cells than on TZM-bl cells, whereas levels of CXCR4 were approximately equal (Fig. (Fig.1C).1C). We therefore measured the susceptibility of both cell lines to infection by three molecularly cloned Env-pseudotyped viruses, each bearing an Env from a different CCR5-tropic HIV-1 subtype B virus (SF162.LS, Bal.26, and QH0692.42). Infection was quantified by Luc activity expressed as relative luminescence units (RLU). Because JC.48 cells do not contain a reporter gene, the Env-pseudotyped viruses were prepared by cotransfection with the NL4-3.Luc.R-E- reporter backbone plasmid (7). Identical Luc-containing, Env-pseudotyped virus stocks were used in both cell lines. As shown in Fig. Fig.2A,2A, the infectivity of each pseudotyped virus was somewhat diminished in JC.48 cells compared to the infectivity in TZM-bl cells. Nonetheless, the levels of infectivity in JC.48 cells remained acceptable for neutralization assays.Open in a separate windowFIG. 2.HIV-1 infectivity and neutralization in TZM-bl and JC.48.CD4.CCR5 cells. (A) TZM-bl and JC.48 cells were incubated with serial fourfold dilutions (11 dilutions total) of three HIV-1 Env-pseudotyped viruses in quadruplicate in 96-well culture plates. Luc activity was measured after 48 h of incubation and is expressed as RLU after subtraction of background luminescence from cell control wells. Squares, TZM-bl cells; triangles, JC.48 cells. (B) Neutralization assays were performed with three HIV-1 Env-pseudotyped viruses in either TZM-bl or JC.48 cells. Input virus doses were adjusted to yield equivalent infectivity in both cell lines. Black bars, TZM-bl; gray bars, JC.48. Top panel: sCD4, monoclonal Abs, and HIVIG (purified immunoglobulin G from pooled HIV-1-positive plasmas). Bottom panel: individual HIV-1-positive plasma samples. The same three stocks of virus were used in both experiments. All three Env-pseudotyped viruses were prepared with the NL4-3.Luc.R-E- reporter backbone plasmid.With this information in hand, neutralization assays were performed in JC.48 and TZM-bl cells using adjusted virus doses that yielded equivalent infectivity levels in both cell lines. These neutralization assays were performed in a 96-well format as described previously (12), where the 50% inhibitory dose (ID50) was reported as either the concentration or sample dilution at which RLU were reduced by 50% compared to RLU in virus control wells (cells plus virus without test sample) after subtraction of background RLU from cell control wells (cells only). A wide variety of serologic reagents was tested, including sCD4, a monoclonal Ab to the CD4 binding site of gp120 (immunoglobulin G1b12) (15); a monoclonal Ab that recognizes a glycan-specific epitope on gp120 (2G12) (5); two monoclonal Abs that recognize adjacent epitopes in the membrane proximal external region of gp41 (2F5 and 4E10) (2, 4); and serum samples from seven antiretroviral-naive HIV-1-infected individuals. As shown in Fig. Fig.2B,2B, results in the two cell lines were similar for all three viruses and all serologic reagents tested. Indeed, ID50 values in the two cell types agreed within twofold, which is within the normal range of variability of the assay. These results indicate that equivalent neutralization results were obtained in both cell lines.In summary, we found no evidence that ecotropic MLV contamination in TZM-bl cells has a measurable effect on HIV-1 neutralization when these cells are used as targets for infection. This outcome indicates that the presence of ecotropic MLV in TZM-bl cells does not alter the ability of Ab to neutralize HIV-1, nor does it interfere with the detection of neutralization by using HIV-1 Tat-regulated reporter gene expression in a single-cycle infection assay. However, we discourage the use of TZM-bl cells to generate HIV-1 stocks, because the latter would likely be contaminated with ecotropic MLV and contain pseudovirions with mixtures of HIV-1 and ecotropic MLV Env glycoproteins. For this reason, we have begun efforts to produce an uncontaminated, second-generation panel of HeLa-CD4/CCR5 cell clones that express diverse amounts of CCR5 and to isolate a TZM-bl variant lacking MLV antigens.  相似文献   
7.
Double fluorescent and spin sensors were recently used to detect transient oxidants via simultaneous fluorescence change and production of the nitroxide radical detected by electron paramagnetic resonance. One such oxidant, singlet molecular oxygen ((1)O(2)), was detected in thylakoid membrane using these probes. In the present study, we investigated the total (physical and chemical) quenching of (1)O(2) phosphorescence by sensors composed of the 2,5-dihydro-2,2,5,5-tetramethyl-1H-pyrrole moiety attached to xanthene or dansyl fluorophores. We found that the quenching rate constants were in the range (2-7) x 10(7) M(-1)s(-1) in acetonitrile and D(2)O. Quenching of (1)O(2) is usually an additive process in which different functional groups may contribute. We estimated that the (1)O(2) quenching by the amine fragments was ca. one to two orders of magnitude lower than that for the complete molecules. Our data suggest that the incorporation of a fluorescent chromophore results in additional strong quenching of (1)O(2), which may in turn decrease the nitroxide yield via the (1)O(2) chemical path, possibly having an effect on quantitative interpretations. We have also found that probes with the dansyl fluorophore photosensitized (1)O(2) upon UV excitation with the quantum yield of 0.087 in acetonitrile at 366 nm. This result shows that care must be taken when the dansyl-based sensors are used in experiments requiring UV irradiation. We hope that our results will contribute to a better characterization and wider use of these novel double sensors.  相似文献   
8.
Neutralizing antibodies were assessed before and after intravenous challenge with pathogenic SIVsmE660 in rhesus macaques that had been immunized with recombinant modified vaccinia virus Ankara expressing one or more simian immunodeficiency virus gene products (MVA-SIV). Animals received either MVA-gag-pol, MVA-env, MVA-gag-pol-env, or nonrecombinant MVA. Although no animals were completely protected from infection with SIV, animals immunized with recombinant MVA-SIV vaccines had lower virus loads and prolonged survival relative to control animals that received nonrecombinant MVA (I. Ourmanov et al., J. Virol. 74:2740-2751, 2000). Titers of neutralizing antibodies measured with the vaccine strain SIVsmH-4 were low in the MVA-env and MVA-gag-pol-env groups of animals and were undetectable in the MVA-gag-pol and nonrecombinant MVA groups of animals on the day of challenge (4 weeks after final immunization). Titers of SIVsmH-4-neutralizing antibodies remained unchanged 1 week later but increased approximately 100-fold 2 weeks postchallenge in the MVA-env and MVA-gag-pol-env groups while the titers remained low or undetectable in the MVA-gag-pol and nonrecombinant MVA groups. This anamnestic neutralizing antibody response was also detected with T-cell-line-adapted stocks of SIVmac251 and SIV/DeltaB670 but not with SIVmac239, as this latter virus resisted neutralization. Most animals in each group had high titers of SIVsmH-4-neutralizing antibodies 8 weeks postchallenge. Titers of neutralizing antibodies were low or undetectable until about 12 weeks of infection in all groups of animals and showed little or no evidence of an anamnestic response when measured with SIVsmE660. The results indicate that recombinant MVA is a promising vector to use to prime for an anamnestic neutralizing antibody response following infection with primate lentiviruses that cause AIDS. However, the Env component of the present vaccine needs improvement in order to target a broad spectrum of viral variants, including those that resemble primary isolates.  相似文献   
9.
Induction of broadly cross-reactive neutralizing antibodies is a high priority for AIDS vaccine development but one that has proven difficult to be achieved. While most immunogens generate antibodies that neutralize a subset of T-cell-line-adapted strains of human immunodeficiency virus type 1 (HIV-1), none so far have generated a potent, broadly cross-reactive response against primary isolates of the virus. Even small increments in immunogen improvement leading to increases in neutralizing antibody titers and cross-neutralizing activity would accelerate vaccine development; however, a lack of uniformity in target strains used by different investigators to assess cross-neutralization has made the comparison of vaccine-induced antibody responses difficult. Thus, there is an urgent need to establish standard panels of HIV-1 reference strains for wide distribution. To facilitate this, full-length gp160 genes were cloned from acute and early subtype B infections and characterized for use as reference reagents to assess neutralizing antibodies against clade B HIV-1. Individual gp160 clones were screened for infectivity as Env-pseudotyped viruses in a luciferase reporter gene assay in JC53-BL (TZM-bl) cells. Functional env clones were sequenced and their neutralization phenotypes characterized by using soluble CD4, monoclonal antibodies, and serum samples from infected individuals and noninfected recipients of a recombinant gp120 vaccine. Env clones from 12 R5 primary HIV-1 isolates were selected that were not unusually sensitive or resistant to neutralization and comprised a wide spectrum of genetic, antigenic, and geographic diversity. These reference reagents will facilitate proficiency testing and other validation efforts aimed at improving assay performance across laboratories and can be used for standardized assessments of vaccine-elicited neutralizing antibodies.  相似文献   
10.
Neuronal signal integration and information processing in cortical networks critically depend on the organization of synaptic connectivity. During development, neurons can form synaptic connections when their axonal and dendritic arborizations come within close proximity of each other. Although many signaling cues are thought to be involved in guiding neuronal extensions, the extent to which accidental appositions between axons and dendrites can already account for synaptic connectivity remains unclear. To investigate this, we generated a local network of cortical L2/3 neurons that grew out independently of each other and that were not guided by any extracellular cues. Synapses were formed when axonal and dendritic branches came by chance within a threshold distance of each other. Despite the absence of guidance cues, we found that the emerging synaptic connectivity showed a good agreement with available experimental data on spatial locations of synapses on dendrites and axons, number of synapses by which neurons are connected, connection probability between neurons, distance between connected neurons, and pattern of synaptic connectivity. The connectivity pattern had a small-world topology but was not scale free. Together, our results suggest that baseline synaptic connectivity in local cortical circuits may largely result from accidentally overlapping axonal and dendritic branches of independently outgrowing neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号