首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2021年   1篇
  2015年   1篇
  2011年   4篇
  2009年   1篇
  1992年   1篇
排序方式: 共有8条查询结果,搜索用时 14 毫秒
1
1.
Flow cytometry (FCM) was used to assess microbial community abundances and patterns in three natural, large and deep peri-alpine hydrosystems, i.e., lakes Annecy (oligotrophic), Bourget, and Geneva (mesotrophic). Picocyanobacteria, small eukaryotic autotrophs, heterotrophic prokaryotes, and viruses were studied in the 0–50 m surface layers to highlight the impact of both physical and chemical parameters as well as possible biotic interactions on the functioning of microbial communities. Some specificities were recorded according to the trophic status of each ecosystem such as the higher number of viruses and heterotrophic bacteria in mesotrophic environments (i.e., Lakes Geneva and Bourget) or the higher abundance of picocyanobacteria in the oligotrophic Lake Annecy. However, both seasonal (temperature) and spatial (depth) variations were comparatively more important than the trophic status in driving the microbial communities’ abundances in these three lakes, as revealed by principal component analysis (PCA). A strong viral termination of the heterotrophic bacterial blooms could be observed in autumn for each lake, in parallel to the mixing of the upper lit layers. As virus to bacteria ratio (VBR) was indeed very high at this period with values varying between 87 and 114, such important relationships between viruses and bacteria were likely. The magnitudes of seasonal variations in VBR, with the highest values ever reported so far, were largely greater than the magnitude of theoretical variations due to the trophic status, suggesting also a strong seasonality in virioplankton production associated to prokaryotic dynamics. FCM analyses allowed discriminating several viral groups. Virus-Like Particles group 1 (VLP1) and group 2 (VLP2) were always observed and significantly correlated to bacteria for the former and chlorophyll a and picocyanobacteria for the latter, suggesting that most of VLP1 and VLP2 could be bacteriophages and cyanophages, respectively. On the basis of these results, new ways of investigation emerge concerning the study of relationships between specific picoplanktonic groups; and overall these results provide new evidence of the necessity to consider further viruses for a better understanding of lake plankton ecology. Handling editor: Luigi Naselli-Flores  相似文献   
2.
We have investigated the antioxidant properties of V79 Chinese hamster cells rendered resistant to menadione by chronic exposure to increasing concentrations of this quinone. MD1, a clone of resistant cells, was compared to the parental M8 cells; the former showed increased activity of catalase (3 fold), glutathione peroxidase (1.6 fold) and DT-diaphorase (2.6 fold), as well as an increase in glutathione (3.2 fold). Although one of the products of menadione metabolism is superoxide anion, no changes in total superoxide dismutase activity was observed in MD1 cells. MD1 menadione resistant cells were also resistant to killing by hydrogen peroxide and contained tandem duplication of chromosome 6. A similar duplication of chromosome 6 was seen in several independently derived menadione resistant clones and therefore seems closed linked to the establishment of the resistance. Upon removal of menadione from the medium, some of these properties of MD1 cells, viz., resistance to menadione, elevated glutathione levels, and glutathione peroxidase activity, were lost and the cells resembled M8 cells. However, resistance to H2O2, elevated catalase activity and the duplicated chromosome remained stable for more than 40 cell passages in the absence of menadione. The increase in catalase activity was correlated with an increase in catalase mRNA content and a 50% amplification of catalase gene, as determined, respectively, by Northern and Southern blot analysis. The role of the chromosome 6 duplication in resistance to oxidative stress remains to be established. It is not responsible directly for elevated catalase levels since the catalase gene is on chromosome 3.Abbreviations SDS Sodium Dodecyl Sulphate - SOD Superoxide Dismutase - PBS Phosphate Buffered Saline (8.1 mM Na2HPO4, 1.47 mM KH2PO4, 2.68 mM KCl, 137 mM NaCl) - CDTA N,N,N,N-tetracetic-trans-1,2-diaminocyclohexane acid - MOPS Sulphonic-3-(N-morpholine)-propane acid - SSC 150 mM Nacl, 15 mM sodium-citrate, pH 6.8  相似文献   
3.
Universal primers for SSU rRNA genes allow profiling of natural communities by simultaneously amplifying templates from Bacteria, Archaea, and Eukaryota in a single PCR reaction. Despite the potential to show relative abundance for all rRNA genes, universal primers are rarely used, due to various concerns including amplicon length variation and its effect on bioinformatic pipelines. We thus developed 16S and 18S rRNA mock communities and a bioinformatic pipeline to validate this approach. Using these mocks, we show that universal primers (515Y/926R) outperformed eukaryote-specific V4 primers in observed versus expected abundance correlations (slope = 0.88 vs. 0.67–0.79), and mock community members with single mismatches to the primer were strongly underestimated (threefold to eightfold). Using field samples, both primers yielded similar 18S beta-diversity patterns (Mantel test, p < 0.001) but differences in relative proportions of many rarer taxa. To test for length biases, we mixed mock communities (16S + 18S) before PCR and found a twofold underestimation of 18S sequences due to sequencing bias. Correcting for the twofold underestimation, we estimate that, in Southern California field samples (1.2–80 μm), there were averages of 35% 18S, 28% chloroplast 16S, and 37% prokaryote 16S rRNA genes. These data demonstrate the potential for universal primers to generate comprehensive microbiome profiles.  相似文献   
4.
Bacterioplankton plays a central role in the microbial functioning of lacustrine ecosystems; however, factors that constrain its structural variation are still poorly understood. Here we evaluated the driving forces exerted by a large set of environmental and biological parameters on the temporal and spatial dynamics of free-living bacterial community structures (BCS) in two neighboring perialpine lakes, Lake Bourget and Lake Annecy, which differ in trophic status. We analyzed monthly data from a 1-year sampling period at two depths situated in the epi- and hypolimnia for each lake. Overall, denaturing gradient gel electrophoresis (DGGE) revealed significant differences in the BCS in the two lakes, characterized by a higher number of bands in the oligotrophic ecosystem (i.e., Lake Annecy). The temporal dynamics of BCS differed greatly between depths and lakes, with temporal scale patterns being much longer in the mesotrophic Lake Bourget. Direct-gradient multivariate ordination analyses showed that a complex array of biogeochemical parameters was the driving force behind BCS shifts in both lakes. Our results indicated that 60 to 80% of the variance was explained only by the bottom-up factors in both lakes, indicating the importance of nutrients and organic matter from autotrophic origin in controlling the BCS. Top-down regulation by flagellates together with ciliates or viruses was found only in the hypolimnion and not in the epilimnion for both lakes and explained less than 18% of the bacterial community changes during the year. Our study suggests that the temporal dynamics of the free-living bacterial community structure in deep perialpine lakes are dependent mainly on bottom-up factors and to a lesser extent on top-down factors, whatever the specific environmental conditions of these lakes.  相似文献   
5.
IntroductionSepsis is associated with increased mortality, delirium and long-term cognitive impairment in intensive care unit (ICU) patients. Electroencephalogram (EEG) abnormalities occurring at the acute stage of sepsis may correlate with severity of brain dysfunction. Predictive value of early standard EEG abnormalities for mortality in ICU septic patients remains to be assessed.MethodsIn this prospective, single center, observational study, standard EEG was performed, analyzed and classified according to both Synek and Young EEG scales, in consecutive patients acutely admitted in ICU for sepsis. Delirium, coma and the level of sedation were assessed at the time of EEG recording; and duration of sedation, occurrence of in-ICU delirium or death were assessed during follow-up. Adjusted analyses were carried out using multiple logistic regression.ResultsOne hundred ten patients were included, mean age 63.8 (±18.1) years, median SAPS-II score 38 (29–55). At the time of EEG recording, 46 patients (42%) were sedated and 22 (20%) suffered from delirium. Overall, 54 patients (49%) developed delirium, of which 32 (29%) in the days after EEG recording. 23 (21%) patients died in the ICU. Absence of EEG reactivity was observed in 27 patients (25%), periodic discharges (PDs) in 21 (19%) and electrographic seizures (ESZ) in 17 (15%). ICU mortality was independently associated with a delta-predominant background (OR: 3.36; 95% CI [1.08 to 10.4]), absence of EEG reactivity (OR: 4.44; 95% CI [1.37–14.3], PDs (OR: 3.24; 95% CI [1.03 to 10.2]), Synek grade ≥ 3 (OR: 5.35; 95% CI [1.66–17.2]) and Young grade > 1 (OR: 3.44; 95% CI [1.09–10.8]) after adjustment to Simplified Acute Physiology Score (SAPS-II) at admission and level of sedation. Delirium at the time of EEG was associated with ESZ in non-sedated patients (32% vs 10%, p = 0.037); with Synek grade ≥ 3 (36% vs 7%, p< 0.05) and Young grade > 1 (36% vs 17%, p< 0.001). Occurrence of delirium in the days after EEG was associated with a delta-predominant background (48% vs 15%, p = 0.001); absence of reactivity (39% vs 10%, p = 0.003), Synek grade ≥ 3 (42% vs 17%, p = 0.001) and Young grade >1 (58% vs 17%, p = 0.0001).ConclusionsIn this prospective cohort of 110 septic ICU patients, early standard EEG was significantly disturbed. Absence of EEG reactivity, a delta-predominant background, PDs, Synek grade ≥ 3 and Young grade > 1 at day 1 to 3 following admission were independent predictors of ICU mortality and were associated with occurence of delirium. ESZ and PDs, found in about 20% of our patients. Their prevalence could have been higher, with a still higher predictive value, if they had been diagnosed more thoroughly using continuous EEG.  相似文献   
6.

Background

Over the last 30 years, extensive studies have revealed the crucial roles played by microbes in aquatic ecosystems. It has been shown that bacteria, viruses and protozoan grazers are dominant in terms of abundance and biomass. The frequent interactions between these microbiological compartments are responsible for strong trophic links from dissolved organic matter to higher trophic levels, via heterotrophic bacteria, which form the basis for the important biogeochemical roles of microbial food webs in aquatic ecosystems. To gain a better understanding of the interactions between bacteria, viruses and flagellates in lacustrine ecosystems, we investigated the effect of protistan bacterivory on bacterial abundance, production and structure [determined by 16S rRNA PCR-DGGE], and viral abundance and activity of two lakes of contrasting trophic status. Four experiments were conducted in the oligotrophic Lake Annecy and the mesotrophic Lake Bourget over two seasons (early spring vs. summer) using a fractionation approach. In situ dark vs. light incubations were performed to consider the effects of the different treatments in the presence and absence of phototrophic activity.

Results

The presence of grazers (i.e. < 5-μm small eukaryotes) affected viral production positively in all experiments, and the stimulation of viral production (compared to the treatment with no eukaryotic predators) was more variable between lakes than between seasons, with the highest value having been recorded in the mesotrophic lake (+30%). Viral lysis and grazing activities acted additively to sustain high bacterial production in all experiments. Nevertheless, the stimulation of bacterial production was more variable between seasons than between lakes, with the highest values obtained in summer (+33.5% and +37.5% in Lakes Bourget and Annecy, respectively). The presence of both predators (nanoflagellates and viruses) did not seem to have a clear influence upon bacterial community structure according to the four experiments.

Conclusions

Our results highlight the importance of a synergistic effect, i.e. the positive influence of grazers on viral activities in sustaining (directly and indirectly) bacterial production and affecting composition, in both oligotrophic and mesotrophic lakes.  相似文献   
7.
We have investigated the ecology of viruses in Lake Bourget (France) from January to August 2008. Data were analysed for viral and bacterial abundance and production, viral decay, frequency of lysogenic cells, the contribution of bacteriophages to prokaryotic mortality and their potential influence on nutrient dynamics. Analyses and experiments were conducted on samples from the epilimnion (2 m) and the hypolimnion (50 m), taken at the reference site of the lake. The abundance of virus‐like particles (VLP) varied from 3.4 × 107 to 8.2 × 107 VLP ml?1; with the highest numbers and virus‐to‐bacterium ratio (VBR = 69) recorded in winter. Viral production varied from 3.2 × 104 VLP ml?1 h?1 (July) to 2 × 106 VLP ml?1 h?1 (February and April), and production was lower in the hypolimnion. Viral decay rate reached 0.12–0.15 day?1, and this parameter varied greatly with sampling date and methodology (i.e. KCN versus filtration). Using transmission electron microscopy (TEM) analysis, viral lysis was responsible for 0% (January) to 71% (February) of bacterial mortality, while viral lysis varied between 0% (April) and 53% (January) per day when using a modified dilution approach. Calculated from viral production and burst size, the virus‐induced bacterial mortality varied between 0% (January) and 68% (August). A weak relationship was found between the two first methods (TEM versus dilution approach). Interestingly, flow cytometry analysis performed on the dilution experiment samples revealed that the viral impact was mostly on high DNA content bacterial cells whereas grazing, varying between 8.3% (June) and 75.4% (April), was reflected in both HDNA and LDNA cells equally. The lysogenic fraction varied between 0% (spring/summer) and 62% (winter) of total bacterial abundance, and increased slightly with increasing amounts of mitomycin C added. High percentages of lysogenic cells were recorded when bacterial abundance and activity were the lowest. The calculated release of carbon and phosphorus from viral lysis reached up to 56.5 µgC l?1 day?1 (assuming 20 fgC cell?1) and 1.4 µgP l?1 day?1 (assuming 0.5 fgP cell?1), respectively, which may represent a significant fraction of bacterioplankton nutrient demand. This study provides new evidence of the quantitative and functional importance of the virioplankton in the functioning of microbial food webs in peri‐alpine lakes. It also highlights methodologically dependent results.  相似文献   
8.
Despite the considerable attention that has been paid to bacterioplankton over recent decades, the dynamic of aquatic bacterial community structure is still poorly understood, and long-term studies are particularly lacking. Moreover, how the environment governs diversity patterns remains a key issue in aquatic microbial ecology. In this study, we used denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA gene fragments and multivariable statistical approaches to explore the patterns of change in the free-living bacterial community in the mesotrophic and mono-meromictic Lake Bourget (France). A monthly sampling was conducted over two consecutive years (2007 and 2008) and at two different depths characterizing the epi- and hypolimnion of the lake (2 and 50 m, respectively). Temporal shifts in the bacterial community structure followed different patterns according to depth, and no seasonal reproducibility was recorded from 1 year to the next. Our results showed that the bacterial community structure displayed lower diversity at 2 m (22 bands) compared to 50 m (32 bands) and that bacterial community structure dynamics followed dissimilar trends between the two depths. At 2 m, five shifts in the bacterial community structure occurred, with the temporal scale varying between 2 and 8 months whereas, at 50 m, four shifts in the bacterial community structure took place at 50 m, with the temporal scale fluctuating between 3 and 13 months. More than 60% of the bacterial community structure variance was explained by seven variables at 2 m against eight at 50 m. Nutrients (PO4-P, NH4-N and NO3-N) and temperature were responsible for 49.6% of the variance at 2 m whereas these nutrients, with dissolved oxygen and chlorophyll a accounting for 59.6% of the variance at 50 m. Grazing by ciliates played also a critical role on the bacterial community structure at both depths. Our results suggest that the free-living bacterial community structure in the epi- and hypolimnion of Lake Bourget is mainly driven by combined, but differently weighted, top-down and bottom-up factors at 2 and 50 m.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号