首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   6篇
  2022年   2篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   8篇
  2011年   8篇
  2010年   5篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
2.
When appended to the epidermal growth factor receptor (EGFR), ubiquitin serves as a sorting signal for lysosomal degradation. Here we demonstrate that the ubiquitin ligase of EGFR, namely c-Cbl, also mediates receptor modification with the ubiquitin-like molecule Nedd8. EGF stimulates receptor neddylation, which enhances subsequent ubiquitylation, as well as sorting of EGFR for degradation. Multiple lysine residues, located within the tyrosine kinase domain of EGFR, serve as attachment sites for Nedd8. A set of clathrin coat-associated binders of ubiquitin also bind Nedd8, but they undergo ubiquitylation, not neddylation. We discuss the emerging versatility of the concerted action of ubiquitylation and neddylation in the process that desensitizes growth factor-activated receptor tyrosine kinases.  相似文献   
3.
The Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent pathway for telomere maintenance that is active in a significant subset of human cancers and in vitro immortalized cell lines. ALT is thought to involve templated extension of telomeres through homologous recombination, but the genetic or epigenetic changes that unleash ALT are not known. Recently, mutations in the ATRX/DAXX chromatin remodeling complex and histone H3.3 were found to correlate with features of ALT in pancreatic neuroendocrine cancers, pediatric glioblastomas, and other tumors of the central nervous system, suggesting that these mutations might contribute to the activation of the ALT pathway in these cancers. We have taken a comprehensive approach to deciphering ALT by applying genomic, molecular biological, and cell biological approaches to a panel of 22 ALT cell lines, including cell lines derived in vitro. Here we show that loss of ATRX protein and mutations in the ATRX gene are hallmarks of ALT-immortalized cell lines. In addition, ALT is associated with extensive genome rearrangements, marked micronucleation, defects in the G2/M checkpoint, and altered double-strand break (DSB) repair. These attributes will facilitate the diagnosis and treatment of ALT positive human cancers.  相似文献   
4.
Aims Resource allocation in plants can be strongly affected by competition. Besides plant–plant interactions, terrestrial plants compete with the soil bacterial community over nutrients. Since the bacterial communities cannot synthesize their own energy sources, they are dependent on external carbon sources. Unlike the effect of overall amounts of carbon (added to the soil) on plant performance, the effect of fine scale temporal variation in soil carbon inputs on the bacterial biomass and its cascading effects on plant growth are largely unknown. We hypothesize that continuous carbon supply (small temporal variance) will result in a relatively constant bacterial biomass that will effectively compete with plants for nutrients. On the other hand, carbon pulses (large temporal variance) are expected to cause oscillations in bacterial biomass, enabling plants temporal escape from competition and possibly enabling increased growth. We thus predicted that continuous carbon supply would increase root allocation at the expense of decreased reproductive output. We also expected this effect to be noticeable only when sufficient nutrients were present in the soil.Methods Wheat plants were grown for 64 days in pots containing either sterilized or inoculated soils, with or without slow-release fertilizer, subjected to one of the following six carbon treatments: daily (1.5mg glucose), every other day (3mg glucose), 4 days (6mg glucose), 8 days (12mg glucose), 16 days (24mg glucose) and no carbon control.Important findings Remarkably, carbon pulses (every 2–16 days) led to increased reproductive allocation at the expense of decreased root allocation in plants growing in inoculated soils. Consistent with our prediction, these effects were noticeable only when sufficient nutrients were present in the soil. Furthermore, soil inoculation in plants subjected to low nutrient availability resulted in decreased total plant biomass. We interpret this to mean that when the amount of available nutrients is low, these nutrients are mainly used by the bacterial community. Our results show that temporal variation in soil carbon inputs may play an important role in aboveground–belowground interactions, affecting plant resource allocation.  相似文献   
5.
6.
First structures of an active bacterial tyrosinase reveal copper plasticity   总被引:2,自引:0,他引:2  
Tyrosinase is a member of the type 3 copper enzyme family that is involved in the production of melanin in a wide range of organisms. The crystal structures of a tyrosinase from Bacillus megaterium were determined at a resolution of 2.0-2.3 Å. The enzyme crystallized as a dimer in the asymmetric unit and was shown to be active in crystal. The overall monomeric structure is similar to that of the monomer of the previously determined tyrosinase from Streptomyces castaneoglobisporus, but it does not contain an accessory Cu-binding “caddie” protein. Two Cu(II) ions, serving as the major cofactors within the active site, are coordinated by six conserved histidine residues. However, determination of structures under different conditions shows varying occupancies and positions of the copper ions. This apparent mobility in copper binding modes indicates that there is a pathway by which copper is accumulated or lost by the enzyme. Additionally, we suggest that residues R209 and V218, situated in a second shell of residues surrounding the active site, play a role in substrate binding orientation based on their flexibility and position. The determination of a structure with the inhibitor kojic acid, the first tyrosinase structure with a bound ligand, revealed additional residues involved in the positioning of substrates in the active site. Comparison of wild-type structures with the structure of the site-specific variant R209H, which possesses a higher monophenolase/diphenolase activity ratio, lends further support to a previously suggested mechanism by which monophenolic substrates dock mainly to CuA.  相似文献   
7.
Migratory birds make decisions about how far to travel based on cost-benefit trade-offs. However, in many cases the net effect of these trade-offs is unclear. We sought to address this question by measuring feather corticosterone (CORTf), leucocyte profile, avian malaria parasite prevalence and estimating fueling rates in three spatially segregated wintering populations of the migratory shorebird ruddy turnstone Arenaria interpres during their stay in the winter habitat. These birds fly from the high-Arctic breeding ground to Australia, but differ in that some decide to end their migration early (Broome, Western Australia), whereas others travel further to either South Australia or Tasmania. We hypothesized that the extra costs in birds migrating greater distances and overwintering in colder climates would be offset by benefits when reaching their destination. This would be evidenced by lower stress biomarkers in populations that travel further, owing to the expected benefits of greater resources and improved vitality. We show that avian malaria prevalence and physiological stress levels were lower in birds flying to South Australia and Tasmania than those overwintering in Broome. Furthermore, our modeling predicts that birds in the southernmost locations enjoy higher fueling rates. Our data are consistent with the interpretation that birds occupying more costly wintering locations in terms of higher migratory flight and thermoregulatory costs are compensated by better feeding conditions and lower blood parasite infections, which facilitates timely and speedy migration back to the breeding ground. These data contribute to our understanding of cost-benefit trade-offs in the decision making underlying migratory behaviour.  相似文献   
8.
Retinitis pigmentosa (RP) is the most common form of hereditary retinal degeneration, with a worldwide prevalence of 1 in 4000. Over 30 genes and loci have been implicated in nonsyndromic autosomal-recessive (ar) RP. Genome-wide homozygosity mapping was conducted in two sibships from an extended consanguineous Muslim Arab Israeli family segregating ar severe early-onset RP. A shared homozygous region on chromosome 17q25.3 was identified in both sibships, with an overlap of 4.7 Mb. One of the genes located in this interval is PDE6G, encoding for the inhibitory γ subunit of rod photoreceptor cyclic GMP-phosphodiesterase. Mutations in the genes encoding for the catalytic subunits of this holoenzyme, PDE6A and PDE6B, cause arRP. Sequencing of all coding exons, including exon-intron boundaries, revealed a homozygous single base change (c.187+1G>T) located in the conserved intron 3 donor splice site of PDE6G. This mutation cosegregated with the disease in the extended family. We used an in vitro splicing assay to demonstrate that this mutation leads to incorrect splicing. Affected individuals had markedly constricted visual fields. Both scotopic and photopic electroretinograms were severely reduced or completely extinct. Funduscopy showed typical bone spicule-type pigment deposits spread mainly at the midperiphery, as well as pallor of the optic disk. Macular involvement was indicated by the lack of foveal reflex and typical cystoid macular edema, proved by optical coherence tomography. These findings demonstrate the positive role of the γ subunit in maintaining phosphodiesterase activity and confirm the contribution of PDE6G to the etiology of RP in humans.  相似文献   
9.
We examined the possible occurrence and function of neuronal Ca(2+) sensor 1 (NCS-1/frequenin) in the mast cell line rat basophilic leukemia, RBL-2H3. This protein has been implicated in the control of neurosecretion from dense core granules in neuronal cells as well as in the control of constitutive secretory pathways in both yeast and mammalian cells. We show that RBL-2H3 cells, secretory cells of the immune system, endogenously express the 22-kDa NCS-1 protein as well as an immune-related 50-kDa protein. Both proteins associate in vivo with phosphatidylinositol 4-kinase beta (PI4Kbeta) and colocalize with the enzyme in the Golgi region. We show further that overexpression of NCS-1 in RBL-2H3 cells stimulates the catalytic activity of PI4Kbeta, increases IgE receptor (FcepsilonRI)-triggered hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)), and stimulates FcepsilonRI-triggered, but not Ca(2+) ionophore-triggered, exocytosis. Conversely, expression of a kinase-dead mutant of PI4Kbeta reduces PI4Kbeta activity, decreases FcepsilonRI-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis, and blocks FcepsilonRI-triggered, but not Ca(2+) ionophore-triggered, exocytosis. Our results indicate that PI(4)P, produced by the Golgi-localized PI4Kbeta, is the rate-limiting factor in the synthesis of the pool of PI(4,5)P(2) that serves as substrate for the generation of lipid-derived second messengers in FcepsilonRI-triggered cells. We conclude that NCS-1 is involved in the control of regulated exocytosis in nonneural cells, where it contributes to stimulus-secretion coupling by interacting with PI4Kbeta and positive regulation of its activity.  相似文献   
10.
Polar expression of ErbB-2/HER2 in epithelia. Bimodal regulation by Lin-7   总被引:5,自引:0,他引:5  
ErbB-2/HER2 drives epithelial malignancies by forming heterodimers with growth factor receptors. The primordial invertebrate receptor is sorted to the basolateral epithelial surface by binding of the PDZ domain of Lin-7 to the receptor's tail. We show that all four human ErbBs are basolaterally expressed, even when the tail motif is absent. Mutagenesis of hLin-7 unveiled a second domain, KID, that binds to the kinase region of ErbBs. The PDZ interaction mediates stabilization of ErbB-2 at the basolateral surface. On the other hand, binding of KID is involved in initial delivery to the basolateral surface, and in its absence, unprocessed ErbB-2 molecules are diverted to the apical surface. Hence, distinct domains of Lin-7 regulate receptor delivery to and maintenance at the basolateral surface of epithelia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号