首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   3篇
  2023年   1篇
  2020年   1篇
  2015年   3篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1970年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Four epidemiologically unrelated Haemophilus influenzae serotype a (Hia) strains from patients in Quebec, Canada, were characterized and found to represent 3 distinct groups. One isolate, found to be biotype I and sequence type (ST)-62 by multilocus sequence typing, was shown to possess the copper- and zinc-containing superoxide dismutase gene, sodC, and was suspected to belong to clonal division II. The other 3 isolates were classified as clonal division I based on the absence of the sodC gene. Among the 3 sodC-negative Hia strains, 2 were biotype II and had related STs (ST-23 and ST-403) and highly similar DNA fingerprints, similar to a group of previously described Hia isolates causing invasive disease in Manitoba, Canada. The remaining sodC-negative strain belonged to biotype I and ST-4 and shared no common allele with ST-23, ST-403, or ST-62. This isolate also possessed the IS1016-bexA partial deletion, which is often associated with increased virulence. Despite the small number of isolates used in this study, our finding of 3 distinct groups shows the existence of a potential genetic diversity not previously described for Hia. Whether this genetic diversity is related to the severity and epidemiology of Hia disease requires further studies.  相似文献   
2.
Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) has emerged as a rapid, highly accurate, and cost-effective method for routine identification of a wide range of microorganisms. We carried out a side by side comparative evaluation of the performance of Bruker Biotyper versus VITEK MS for identification of a large and diverse collection of microorganisms. Most difficult and/or unusual microorganisms, as well as commonly encountered microorganisms were selected, including Gram-positive and negative bacteria, mycobacteria, actinomycetes, yeasts and filamentous fungi. Six hundred forty two strains representing 159 genera and 441 species from clinical specimens previously identified at the Laboratoire de santé publique du Québec (LSPQ) by reference methods were retrospectively chosen for the study. They included 254 Gram-positive bacteria, 167 Gram-negative bacteria, 109 mycobacteria and aerobic actinomycetes and 112 yeasts and moulds. MALDI-TOF MS analyses were performed on both systems according to the manufacturer’s instructions. Of the 642 strains tested, the name of the genus and / or species of 572 strains were referenced in the Bruker database while 406 were present in the VITEK MS IVD database. The Biotyper correctly identified 494 (86.4%) of the strains, while the VITEK MS correctly identified 362 (92.3%) of the strains (excluding 14 mycobacteria that were not tested). Of the 70 strains not present in the Bruker database at the species level, the Biotyper correctly identified 10 (14.3%) to the genus level and 2 (2.9%) to the complex/group level. For 52 (74.2%) strains, we obtained no identification, and an incorrect identification was given for 6 (8.6%) strains. Of the 178 strains not present in the VITEK MS IVD database at the species level (excluding 71 untested mycobacteria and actinomycetes), the VITEK MS correctly identified 12 (6.8%) of the strains each to the genus and to the complex/group level. For 97 (54.5%) strains, no identification was given and for 69 (38.7%) strains, an incorrect identification was obtained. Our study demonstrates that both systems gave a high level (above 85%) of correct identification for a wide range of microorganisms. However, VITEK MS gave more misidentification when the microorganism analysed was not present in the database, compared to Bruker Biotyper. This should be taken into account when this technology is used alone for microorganism identification in a public health laboratory, where isolates received are often difficult to identify and/or unusual microorganisms.  相似文献   
3.
The soybean cyst nematode Heterodera glycines is the most destructive pathogen of soybean in the Unites States. Diversity in the parasitic ability of the nematode allows it to reproduce on nematode-resistant soybean. H. glycines chorismate mutase-1 (Hg-CM-1) is a nematode enzyme with the potential to suppress host plant defense compounds; therefore, it has the potential to enhance the parasitic ability of nematodes expressing the gene. Hg-cm-1 is a member of a gene family where two alleles, Hg-cm-1A and Hg-cm-1B, have been identified. Analysis of the Hg-cm-1 gene copy number revealed that there are multiple copies of Hg-cm-1 alleles in the H. glycines genome. H. glycines inbred lines were crossed to ultimately generate three F2 populations of second-stage juveniles (J2s) segregating for Hg-cm-1A and Hg-cm-1B. Segregation of Hg-cm-1A and 1B approximated a 1:2:1 ratio, which suggested that Hg-cm-1 is organized in a cluster of genes that segregate roughly as a single locus. The F2 H. glycines J2 populations were used to infect nematode-resistant (Hartwig, PI88788, and PI90763) and susceptible (Lee 74) soybean plants. H. glycines grown on Hartwig, Lee 74, and PI90763 showed allelic frequencies similar to Hg-cm-1A/B, but nematodes grown on PI88788 contained predominately Hg-cm-1A allele as a result of a statistically significant drop of Hg-cm-1B in the population. This result suggests that specific Hg-cm-1 alleles, or a closely linked gene, may aid H. glycines in adapting to particular soybean hosts.  相似文献   
4.
5.
Escherichia coli is generally described as a commensal species with occasional pathogenic strains. Due to technological limitations, there is currently little information concerning the prevalence of pathogenic E. coli strains in the environment. For the first time, using a DNA microarray capable of detecting all currently described virulence genes and commonly found antimicrobial resistance genes, a survey of environmental E. coli isolates from recreational waters was carried out. A high proportion (29%) of 308 isolates from a beach site in the Great Lakes carried a pathotype set of virulence-related genes, and 14% carried antimicrobial resistance genes, findings consistent with a potential risk for public health. The results also showed that another 8% of the isolates had unusual virulence gene combinations that would be missed by conventional screening. This new application of a DNA microarray to environmental waters will likely have an important impact on public health, epidemiology, and microbial ecology in the future.  相似文献   
6.
A theory is proposed according to which diffuse esophageal spasm associated with carcinoma may be secondary to neural damage due to invasion by carcinoma without obstruction of the esophageal lumen. A case history is presented to support this theory.  相似文献   
7.
An oligonucleotide microarray detecting 189 Escherichia coli virulence genes or markers and 30 antimicrobial resistance genes was designed and validated using DNA from known reference strains. This microarray was confirmed to be a powerful diagnostic tool for monitoring emerging E. coli pathotypes and antimicrobial resistance, as well as for environmental, epidemiological, and phylogenetic studies including the evaluation of genome plasticity.  相似文献   
8.
Enterohaemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) are gastrointestinal pathogens responsible for severe diarrheal illness. EHEC and EPEC form “attaching and effacing” lesions during colonization and, upon adherence, inject proteins directly into host intestinal cells via the type III secretion system (T3SS). Injected bacterial proteins have a variety of functions but generally alter host cell biology to favor survival and/or replication of the pathogen. Non-LEE-encoded effector A (NleA) is a T3SS-injected effector of EHEC, EPEC, and the related mouse pathogen Citrobacter rodentium. Studies in mouse models indicate that NleA has an important role in bacterial virulence. However, the mechanism by which NleA contributes to disease remains unknown. We have determined that the following translocation into host cells, a serine and threonine-rich region of NleA is modified by host-mediated mucin-type O-linked glycosylation. Surprisingly, this region was not present in several clinical EHEC isolates. When expressed in C. rodentium, a non-modifiable variant of NleA was indistinguishable from wildtype NleA in an acute mortality model but conferred a modest increase in persistence over the course of infection in mixed infections in C57BL/6J mice. This is the first known example of a bacterial effector being modified by host-mediated O-linked glycosylation. Our data also suggests that this modification may confer a selective disadvantage to the bacteria during in vivo infection.  相似文献   
9.
Abstract Citrate permease gene expression in the plasmid-free Lactococcus lactis strains IL1403 and MG1363 was studied. The ability to transport citrate results in diacetyl and acetoin production in IL1403 but not in MG1363. Citrate lyase, α-acetolactate decarboxylase, diacetyl and acetoin reductase were detected in IL1403. These data show that L. lactis ssp. lactis strain IL1403 is a citrate permease mutant of the biovar. diacetylactis . Immunological analysis revealed the α-and β-subunits of citrate lyase not only in IL1403 but also in MG1363 where no citrate lyase activity was found.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号