首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   6篇
  2023年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   3篇
  2006年   5篇
  2005年   6篇
  2004年   1篇
  2003年   3篇
  2001年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有53条查询结果,搜索用时 828 毫秒
1.
The emergence of antibiotic-resistant bacterial strains is a widespread problem in contemporary medical practice and drug design. It is therefore important to elucidate the underlying mechanism in each case. The methyltransferase AviRa from Streptomyces viridochromogenes mediates resistance to the antibiotic avilamycin, which is closely related to evernimicin, an oligosaccharide antibiotic that has been used in medical studies. The structure of AviRa was determined by X-ray diffraction at 1.5A resolution. Phases were obtained from one selenomethionine residue introduced by site-directed mutagenesis. The chain-fold is similar to that of most methyltransferases, although AviRa contains two additional helices as a specific feature. A putative-binding site for the cofactor S-adenosyl-L-methionine was derived from homologous structures. It agrees with the conserved pattern of interacting amino acid residues. AviRa methylates a specific guanine base within the peptidyltransferase loop of the 23S ribosomal RNA. Guided by the target, the enzyme was docked to the cognate ribosomal surface, where it fit well into a deep cleft without contacting any ribosomal protein. The two additional alpha-helices of AviRa filled a depression in the surface. Since the transferred methyl group of the cofactor is in a pocket beneath the enzyme surface, the targeted guanine base has to flip out for methylation.  相似文献   
2.
A strain (S. fradiae Delta urdQ/R) with mutations in urdQ and urdR encoding a dTDP-hexose-3,4-dehydratase and a dTDP-hexose-4-ketoreductase, respectively, produces a new urdamycin analogue (urdamycin X) with changes in the polyketide structure. The structure of urdamycin X has been elucidated by NMR spectroscopy. Urdamycin X was not detectable, even in small amounts, in either S. fradiae Delta urdQ, in S. fradiae DeltaurdR or in S. fradiae A0, a mutant lacking all glycosyltransferase genes. Complementation of S. fradiae Delta urdQ/R restored urdamycin A production indicating that the mutations did not cause any polar effect.  相似文献   
3.
Chorismate pyruvate-lyase activity was detected in extracts of Escherichia coli. 4-Hydroxybenzoate was identified as the product of the enzymatic reaction by chemical derivatization and GC-MS analysis. The ubiC gene, coding for the chorismate pyruvate-lyase, was cloned and sequenced. The molecular weight of the gene product was calculated as 18,776 Da and confirmed by expression of the protein in E. coli minicells. The ubiA gene, coding for the 4-hydroxybenzoate octaprenyl transferase, was identified by sequence homology and complementation of a ubiA- strain. It is located directly downstream of ubiC in a typical operon structure.  相似文献   
4.
5.
A 65-kb region of DNA from Streptomyces viridochromogenes Tü57, containing genes encoding proteins involved in the biosynthesis of avilamycins, was isolated. The DNA sequence of a 6.4-kb fragment from this region revealed four open reading frames (ORF1 to ORF4), three of which are fully contained within the sequenced fragment. The deduced amino acid sequence of AviM, encoded by ORF2, shows 37% identity to a 6-methylsalicylic acid synthase from Penicillium patulum. Cultures of S. lividans TK24 and S. coelicolor CH999 containing plasmids with ORF2 on a 5.5-kb PstI fragment were able to produce orsellinic acid, an unreduced version of 6-methylsalicylic acid. The amino acid sequence encoded by ORF3 (AviD) is 62% identical to that of StrD, a dTDP-glucose synthase from S. griseus. The deduced amino acid sequence of AviE, encoded by ORF4, shows 55% identity to a dTDP-glucose dehydratase (StrE) from S. griseus. Gene insertional inactivation experiments of aviE abolished avilamycin production, indicating the involvement of aviE in the biosynthesis of avilamycins.  相似文献   
6.
The saccharomicins A and B, produced by the actinomycete Saccharothrix espanaensis, are oligosaccharide antibiotics. They consist of 17 monosaccharide units and the unique aglycon N-(m,p-dihydroxycinnamoyl)taurine. To investigate candidate genes responsible for the formation of trans-m,p-dihydroxycinnamic acid (caffeic acid) as part of the saccharomicin aglycon, gene expression experiments were carried out in Streptomyces fradiae XKS. It is shown that the biosynthetic pathway for trans-caffeic acid proceeds from L-tyrosine via trans-p-coumaric acid directly to trans-caffeic acid, since heterologous expression of sam8, encoding a tyrosine ammonia-lyase, led to the production of trans-p-hydroxycinnamic acid (coumaric acid), and coexpression of sam8 and sam5, the latter encoding a 4-coumarate 3-hydroxylase, led to the production of trans-m,p-dihydroxycinnamic acid. This is not in accordance with the general phenylpropanoid pathway in plants, where trans-p-coumaric acid is first activated before the 3-hydroxylation of its ring takes place.  相似文献   
7.
This paper describes the artificial induction of secondary metabolite production in transgenic plant cell cultures using a recombinant, inducible plant promoter. The bacterial gene ubiC from Escherichia coli encodes the enzyme chorismate pyruvate lyase (CPL) which catalyses the conversion of chorismate to 4-hydroxybenzoate (4HB). This gene was fused to the tetracycline-inducible plant promoter Triple-Op. After transformation into Nicotiana tabacum W38 TET, transgenic cell cultures were established. Addition of chlorotetracycline to the medium led to specific induction of CPL activity. The optimal chlorotetracycline concentration was approximately 2 mg/l medium. Three to 5 h after induction, the ubiC mRNA concentration reached a maximum, while highest specific CPL activity was detected after 8 days. The artificial secondary metabolite 4HB was converted to glucosides, and their accumulation reached maximum levels after 5 weeks of subculture. The induction was reversible. Received: 31 May 1997 / Revision received: 22 August 1997 / Accepted: 30 September 1997  相似文献   
8.
9.
The emergence of antibiotic-resistant bacterial strains is a widespread problem in medical practice and drug design, and each case requires the elucidation of the underlying mechanism. AviRb from Streptomyces viridochromogenes methylates the 2'-O atom of U2479 of the 23S ribosomal RNA in Gram-positive bacteria and thus mediates resistance to the oligosaccharide (orthosomycin) antibiotic avilamycin. The structure of AviRb with and without bound cofactor S-adenosyl-L-methionine (AdoMet) was determined, showing that it is a homodimer belonging to the SpoU family within the SPOUT class of methyltransferases. The relationships within this class were analyzed in detail and, in addition, a novel fourth SpoU sequence fingerprint is proposed. Each subunit of AviRb consists of two domains. The N-terminal domain, being related to the ribosomal proteins L30 and L7Ae, is likely to bind RNA. The C-terminal domain is related to all SPOUT methyltransferases, and is responsible for AdoMet-binding, catalysis and dimerization. The cofactor binds at the characteristic knot of the polypeptide in an unusually bent conformation. The transferred methyl group points to a broad cleft formed with the L30-type domain of the other subunit. Measurements of mutant activity revealed four important residues responsible for catalysis and allowed the modeling of a complex between AviRb and the RNA target. The model includes a specificity pocket for uracil but does not contain a base for deprotonating the 2'-O atom of U2479 on methylation.  相似文献   
10.
Combinatorial biosynthesis is a valuable method to generate novel glycosylated natural products. By coexpression of deoxysugar gene cassettes and genes from the staurosporine biosynthetic gene cluster it has now been applied to the generation of novel staurosporine derivatives. The work of Salas and co-workers is highlighted in this article.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号