首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   2篇
  2022年   2篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2008年   8篇
  2007年   3篇
  2006年   5篇
  2005年   1篇
  2004年   3篇
  2003年   8篇
  2002年   7篇
  2001年   6篇
  2000年   6篇
  1999年   6篇
  1998年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
1.
His-172 and Tyr-169 are components of a triad in the active site of trimethylamine dehydrogenase (TMADH) comprising Asp-267, His-172, and Tyr-169. Stopped-flow kinetic studies with trimethylamine as substrate have indicated that mutation of His-172 to Gln reduces the limiting rate constant for flavin reduction approximately 10-fold (Basran, J., Sutcliffe, M. J., Hille, R., and Scrutton, N. S. (1999) Biochem. J. 341, 307-314). A kinetic isotope effect (KIE = k(H)/k(D)) accompanies flavin reduction by H172Q TMADH, the magnitude of which varies significantly with solution pH. With trimethylamine, flavin reduction by H172Q TMADH is controlled by a single macroscopic ionization (pK(a) = 6.8 +/- 0.1). This ionization is perturbed (pK(a) = 7.4 +/- 0.1) in reactions with perdeuterated trimethylamine and is responsible for the apparent variation in the KIE with solution pH. At pH 9.5, where the functional group controlling flavin reduction is fully ionized, the KIE is independent of temperature in the range 277-297 K, consistent with vibrationally assisted hydrogen tunneling during breakage of the substrate C-H bond. Y169F TMADH is approximately 4-fold more compromised than H172Q TMADH for hydrogen transfer, which occurs non-classically. Studies with Y169F TMADH suggest partial thermal excitation of substrate prior to hydrogen tunneling by a vibrationally assisted mechanism. Our studies illustrate the varied effects of compromising mutations on tunneling regimes in enzyme molecules.  相似文献   
2.
The reaction of trimethylamine dehydrogenase with trimethylamine   总被引:1,自引:0,他引:1  
The reductive half-reaction of trimethylamine dehydrogenase with its physiological substrate trimethylamine has been examined by stopped-flow spectroscopy over the pH range 6.0-11.0, with attention focusing on the fastest of the three kinetic phases of the reaction, the flavin reduction/substrate oxidation process. As in previous work with the slow substrate diethylmethylamine, the reaction is found to consist of three well resolved kinetic phases. The observed rate constant for the fast phase exhibits hyperbolic dependence on the substrate concentration with an extrapolated limiting rate constant (klim) greater than 1000 s-1 at pH above 8.5, 10 degrees C. The kinetic parameter klim/Kd for the fast phase exhibits a bell-shaped pH dependence, with two pKa values of 9.3 +/- 0.1 and 10. 0 +/- 0.1 attributed to a basic residue in the enzyme active site and the ionization of the free substrate, respectively. The sigmoidal pH profile for klim gives a single pKa value of 7.1 +/- 0. 2. The observed rate constants for both the intermediate and slow phases are found to decrease as the substrate concentration is increased. The steady-state kinetic behavior of trimethylamine dehydrogenase with trimethylamine has also been examined, and is found to be adequately described without invoking a second, inhibitory substrate-binding site. The present results demonstrate that: (a) substrate must be protonated in order to bind to the enzyme; (b) an ionization group on the enzyme is involved in substrate binding; (c) an active site general base is involved, but not strictly required, in the oxidation of substrate; (d) the fast phase of the reaction with native enzyme is considerably faster than observed with enzyme isolated from Methylophilus methylotrophus that has been grown up on dimethylamine; and (e) a discrete inhibitory substrate-binding site is not required to account for excess substrate inhibition, the kinetic behavior of trimethylamine dehydrogenase can be readily explained in the context of the known properties of the enzyme.  相似文献   
3.
The bacterial cocaine esterase, cocE, hydrolyzes cocaine faster than any other reported cocaine esterase. Hydrolysis of the cocaine benzoyl ester follows Michaelis-Menten kinetics with k(cat) = 7.8 s(-1) and K(M) = 640 nM. A similar rate is observed for hydrolysis of cocaethylene, a more potent cocaine metabolite that has been observed in patients who concurrently abuse cocaine and alcohol. The high catalytic proficiency, lack of observable product inhibition, and ability to hydrolyze both cocaine and cocaethylene make cocE an attractive candidate for rapid cocaine detoxification in an emergency setting. Recently, we determined the crystal structure of this enzyme, and showed that it is a serine carboxylesterase, with a catalytic triad formed by S117, H287, and D259 within a hydrophobic active site, and an oxyanion hole formed by the backbone amide of Y118 and the Y44 hydroxyl. The only enzyme previously known to use a Tyr side chain to form the oxyanion hole is prolyl oligopeptidase, but the Y44F mutation of cocE has a more deleterious effect on the specificity rate constant (k(cat)/K(M)) than the analogous Y473F mutation of prolyl oligopeptidase. Kinetic studies on a series of cocE mutants both validate the proposed mechanism, and reveal the relative contributions of active site residues toward substrate recognition and catalysis. Inspired by the anionic binding pocket of the cocaine binding antibody GNC92H2, we found that a Q55E mutation within the active site of cocE results in a modest (2-fold) improvement in K(M), but a 14-fold loss of k(cat). The pH rate profile of cocE was fit to the ionization of two groups (pK(a1) = 7.7; pK(a2) = 10.4) that likely represent titration of H287 and Y44, respectively. We also describe the crystal structures of both S117A and Y44F mutants of cocE. Finally, urea denaturation studies of cocE by fluorescence and circular dichroism show two unfolding transitions (0.5-0.6 M and 3.2-3.7 M urea), with the first transition likely representing pertubation of the active site.  相似文献   
4.
Dimethylglycine oxidase (DMGO) is a covalent flavoenzyme from Arthrobacter globiformis that catalyzes the oxidative demethylation of dimethylglycine to yield sarcosine, formaldehyde, and hydrogen peroxide. Stopped-flow and steady-state kinetic studies have been used to study the reductive and oxidative half-reactions using dimethylglycine and O2 as substrates. The reductive half-reaction is triphasic. The rate of the fast phase is dependent on substrate concentration, involves flavin reduction, and has a limiting rate constant of 244 s(-1). This phase also displays a kinetic isotope effect of 2.9. Completion of the first kinetic phase generates an intermediate with broad spectral signature between 350 and 500 nm, which is attributed to a reduced enzyme-iminium charge-transfer species, similar to the purple intermediate that accumulates in reactions of D-amino acid oxidase (DAAO) with alanine. The second phase (16 s(-1)) is independent of substrate concentration and is attributed to iminium hydrolysis/deprotonation. The third phase (2 s(-1)) is attributed to product release, the rate of which is less than the steady-state turnover rate (10.6 s(-1)). Flavin oxidation of dithionite- and dimethylglycine-reduced enzyme by O2 occurs in a single phase, and the rate shows a linear dependence on oxygen concentration, giving bimolecular rate constants of 342 and 201 mM(-1) x s(-1), respectively. Enzyme-monitored turnover experiments indicate that decay of the reduced enzyme-iminium intermediate is rate-limiting, consistent with rate constants determined from single turnover studies. A minimal kinetic mechanism is presented, which establishes a close relationship to the mechanism of action of DAAO. The covalent flavin in dimethylglycine oxidase is identified as an alphaN1-histidyl48-FAD, and equilibrium titration studies establish a single redox center that displays typical flavoprotein 'oxidase' characteristics.  相似文献   
5.
Trimethylamine dehydrogenase (TMADH) is an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde. It contains a unique flavin, in the form of a 6-S-cysteinyl FMN, which is bent by approximately 25 degrees along the N5-N10 axis of the flavin isoalloxazine ring. This unusual conformation is thought to modulate the properties of the flavin to facilitate catalysis, and has been postulated to be the result of covalent linkage to Cys-30 at the flavin C6 atom. We report here the crystal structures of recombinant wild-type and the C30A mutant TMADH enzymes, both determined at 2.2 A resolution. Combined crystallographic and NMR studies reveal the presence of inorganic phosphate in the FMN binding site in the deflavo fraction of both recombinant wild-type and C30A proteins. The presence of tightly bound inorganic phosphate in the recombinant enzymes explains the inability to reconstitute the deflavo forms of the recombinant wild-type and C30A enzymes that are generated in vivo. The active site structure and flavin conformation in C30A TMADH are identical to those in recombinant and native TMADH, thus revealing that, contrary to expectation, the 6-S-cysteinyl FMN link is not responsible for the 25 degrees butterfly bending along the N5-N10 axis of the flavin in TMADH. Computational quantum chemistry studies strongly support the proposed role of the butterfly bend in modulating the redox properties of the flavin. Solution studies reveal major differences in the kinetic behavior of the wild-type and C30A proteins. Computational studies reveal a hitherto, unrecognized, contribution made by the S(gamma) atom of Cys-30 to substrate binding, and a role for Cys-30 in the optimal geometrical alignment of substrate with the 6-S-cysteinyl FMN in the enzyme active site.  相似文献   
6.
Shi X  Basran J  Seward HE  Childs W  Bagshaw CR  Boxer SG 《Biochemistry》2007,46(50):14403-14417
Yellow fluorescent protein (YFP) is widely used as a genetically encoded fluorescent marker in biology. In the course of a comprehensive study of this protein, we observed an unusual, negative fluorescence anisotropy at pH 6.0 (McAnaney, T. B., Zeng, W., Doe, C. F. E., Bhanji, N., Wakelin, S., Pearson, D. S., Abbyad, P., Shi, X., Boxer, S. G., and Bagshaw, C. R. (2005) Biochemistry 44, 5510-5524). Here we report that the fluorescence anisotropy of YFP 10C depends on protein concentration in the low micromolar range that was not expected. We propose that the negative anisotropy is a result of unidirectional F?rster resonance energy transfer (FRET) in a dimer of YFP, with the donor chromophore in the neutral form and the acceptor chromophore in the anionic form. This unusual mechanism is supported by studies of a monomeric YFP (A206K YFP) and transient-absorption spectroscopy of YFP 10C. A detailed analysis of the chromophore transition dipole moment direction is presented. The anisotropy and rate constant of this energy transfer are consistent with values produced by an analysis of the dimer structure observed in crystals.  相似文献   
7.
Maize polyamine oxidase (MPAO) is a flavin adenine dinucleotide (FAD)-dependent enzyme that catalyses the oxidation of spermine and spermidine at the secondary amino groups. The structure of MPAO indicates a 30-A long U-shaped tunnel that forms the catalytic site, with residues Glu62 and Glu170 located close to the enzyme-bound FAD and residue Tyr298 in close proximity to Lys300, which in turn is hydrogen-bonded to the flavin N(5) atom via a water molecule (HOH309). To provide insight into the role of these residues in the catalytic mechanism of FAD reduction, we have performed steady-state and stopped-flow studies with wild-type, Glu62Gln, Glu170Gln, Tyr298Phe, and Lys300Met MPAO enzymes. We show that the steady-state enzyme activity is governed by an ionisable group with a macroscopic pK(a) of approximately 5.8. Kinetic analysis of the Glu62Gln, Glu170Gln, and Tyr298Phe MPAO enzymes have indicated (i) only small perturbations in catalytic activity as a result of mutation and (ii) steady-state pH profiles essentially unaltered when compared to the wild-type enzyme, suggesting that these residues do not play a critical role in the reaction mechanism. These kinetic observations are consistent with computational calculations that suggest that Glu62 and Glu170 are protonated over the pH range accessible to kinetic studies. Substitution of Lys300 with Met in MPAO resulted in a 1400-fold decrease in the rate of flavin reduction and a 160-fold decrease in the equilibrium dissociation constant for the Lys300Met-spermidine complex, consistent with a major role for this residue in the mechanism of substrate oxidation. A sizable solvent isotope effect (SIE = 5) accompanies FAD reduction in the wild-type enzyme and steady-state turnover (SIE = 2.3) of MPAO, consistent with the reductive half-reaction of MPAO making a major contribution to rate limitation in steady-state turnover. Studies using the enzyme-monitored turnover method indicate that oxidized FAD is the prominent form during steady-state turnover, consistent with the reductive half-reaction being rate-limiting. Our studies indicate the importance of Lys300 and probable importance of HOH309 to the mechanism of flavin reduction in MPAO. Possible roles for Lys300 and water in the mechanism of flavin reduction are discussed.  相似文献   
8.
Recent evidence from isotope studies supports the view that catalysis by trimethylamine dehydrogenase (TMADH) proceeds from a Michaelis complex involving trimethylamine base and not, as thought previously, trimethylammonium cation. In native TMADH reduction of the flavin by substrate (perdeuterated trimethylamine) is influenced by two ionizations in the Michaelis complex with pK(a) values of 6.5 and 8.4; maximal activity is realized in the alkaline region. The latter ionization has been attributed to residue His-172 and, more recently, the former to the ionization of substrate itself. In the Michaelis complex, the ionization of substrate (pK(a) approximately 6.5 for perdeuterated substrate) is perturbed by approximately -3.3 to -3.6 pH units compared with that of free trimethylamine (pK(a) = 9.8) and free perdeuterated trimethylamine (pK(a) = 10.1), respectively, thus stabilizing trimethylamine base by approximately 2 kJ mol(-1). We show, by targeted mutagenesis and stopped-flow studies that this reduction of the pK(a) is a consequence of electronic interaction with residues Tyr-60 and His-172, thus these two residues are key for optimizing catalysis in the physiological pH range. We also show that residue Tyr-174, the remaining ionizable group in the active site that we have not targeted previously by mutagenesis, is not implicated in the pH dependence of flavin reduction. Formation of a Michaelis complex with trimethylamine base is consistent with a mechanism of amine oxidation that we advanced in our previous computational and kinetic studies which involves nucleophilic attack by the substrate nitrogen atom on the electrophilic C4a atom of the flavin isoalloxazine ring. Stabilization of trimethylamine base in the Michaelis complex over that in free solution is key to optimizing catalysis at physiological pH in TMADH, and may be of general importance in the mechanism of other amine dehydrogenases that require the unprotonated form of the substrate for catalysis.  相似文献   
9.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive which presents an environmental hazard as a major land and groundwater contaminant. Rhodococcus rhodochrous strain 11Y was isolated from explosive contaminated land and is capable of degrading RDX when provided as the sole source of nitrogen for growth. Products of RDX degradation in resting-cell incubations were analyzed and found to include nitrite, formaldehyde, and formate. No ammonium was excreted into the medium, and no dead-end metabolites were observed. The gene responsible for the degradation of RDX in strain 11Y is a constitutively expressed cytochrome P450-like gene, xplA, which is found in a gene cluster with an adrenodoxin reductase homologue, xplB. The cytochrome P450 also has a flavodoxin domain at the N terminus. This study is the first to present a gene which has been identified as being responsible for RDX biodegradation. The mechanism of action of XplA on RDX is thought to involve initial denitration followed by spontaneous ring cleavage and mineralization.  相似文献   
10.
We have previously shown that introduction of an engineered Met160 residue in ascorbate peroxidase (S160M variant) leads to the formation of a covalent link between Met160 and the heme vinyl group [Metcalfe, C. L., et al. (2004) J. Am. Chem. Soc. 126, 16242-16248]. In this work, we have used electronic spectroscopy, HPLC, and mass spectrometry to show that the introduction of a tyrosine residue at the same position (S160Y variant) leads, similarly, to the formation of a heme-tyrosine covalent link in an autocatalytic reaction that also leads to formation of a second covalent link from the heme to Trp41 [Pipirou, Z., et al. (2007) Biochemistry 46, 2174-2180]. Stopped-flow and EPR data implicate the involvement of a tyrosyl radical in the reaction mechanism. The results indicate that the heme can support the formation of different types of covalent links under appropriate conditions. The generality of this idea is discussed in the context of other heme enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号