首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  10篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2012年   2篇
  2011年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有10条查询结果,搜索用时 0 毫秒
1
1.
Anaerobic oxidation of methane (AOM) with sulfate is catalysed by microbial consortia of archaea and bacteria affiliating with methanogens and sulfate-reducing Deltaproteobacteria respectively. There is evidence that methane oxidation is catalysed by enzymes related to those in methanogenesis, but the enzymes for sulfate reduction coupled to AOM have not been examined. We collected microbial mats with high AOM activity from a methane seep in the Black Sea. The mats consisted mainly of archaea of the ANME-2 group and bacteria of the Desulfosarcina-Desulfococcus group. Cell-free mat extract contained activities of enzymes involved in sulfate reduction to sulfide: ATP sulfurylase (adenylyl : sulfate transferase; Sat), APS reductase (Apr) and dissimilatory sulfite reductase (Dsr). We partially purified the enzymes by anion-exchange chromatography. The amounts obtained indicated that the enzymes are abundant in the mat, with Sat accounting for 2% of the soluble mat protein. N-terminal amino acid sequences of purified proteins suggested similarities to the corresponding enzymes of known species of sulfate-reducing bacteria. The deduced amino acid sequence of PCR-amplified genes of the Apr subunits is similar to that of Apr of the Desulfosarcina/Desulfococcus group. These results indicate that the major enzymes involved in sulfate reduction in the Back Sea microbial mats are of bacterial origin, most likely originating from the bacterial partner in the consortium.  相似文献   
2.
Humus-feeding macroinvertebrates play an important role in the transformation of soil organic matter. Their diet contains significant amounts of redox-active components such as iron minerals and humic substances. In soil-feeding termites, acid-soluble Fe(III) and humic acids are almost completely reduced during gut passage. Here, we show that the reduction of Fe(III) and humic acids takes place also in the alkaline guts of scarab beetle larvae. Sterilized gut homogenates of Pachnoda ephippiata no longer converted Fe(III) to Fe(II), indicating an essential role of the gut microbiota in the process. From Fe(III)-reducing enrichment cultures inoculated with highly diluted gut homogenates, we isolated several facultatively anaerobic, alkali-tolerant bacteria that were closely related to metal-reducing isolates in the Bacillus thioparans group. Strain PeC11 showed a remarkable capacity for dissimilatory Fe(III) reduction, both at pH 7 and 10. Rates were strongly stimulated by the addition of the redox mediator 2,6-antraquinone disulfonate and by redox-active components in the fulvic-acid fraction of humus. Although the contribution of strain PeC11 to intestinal Fe(III) reduction in P. ephippiata remains to be further elucidated, our results corroborate the hypothesis that the lack of oxygen and the solubilization of humic substances in the extremely alkaline guts of humivorous soil fauna provide favorable conditions for the efficient reduction of Fe(III) and humic substances by a primarily fermentative microbiota.  相似文献   
3.
Acetogenic bacteria have gained much attraction in recent years as they can produce different biofuels and biochemicals from H2 plus CO2 or even CO alone, therefore opening a promising alternative route for the production of biofuels from renewable sources compared to existing sugar-based routes. However, CO metabolism still raises questions concerning the biochemistry and bioenergetics in many acetogens. In this study, we focused on the two acetogenic bacteria Acetobacterium woodii and Thermoanaerobacter kivui which, so far, are the only identified acetogens harbouring a H2-dependent CO2 reductase and furthermore belong to different classes of ‘Rnf’- and ‘Ech-acetogens’. Both strains catalysed the conversion of CO into the bulk chemical acetate and formate. Formate production was stimulated by uncoupling the energy metabolism from the Wood–Ljungdahl pathway, and specific rates of 1.44 and 1.34 mmol g−1 h−1 for A. woodii ∆rnf and T. kivui wild type were reached. The demonstrated CO-based formate production rates are, to the best of our knowledge, among the highest rates ever reported. Using mutants of ∆hdcr, ∆cooS, ∆hydBA, ∆rnf and ∆ech2 with deficiencies in key enzyme activities of the central metabolism enabled us to postulate two different CO utilization pathways in these two model organisms.  相似文献   
4.
Extremophiles - Thermoanaerobacter kivui is an acetogenic model organism that reduces CO2 with electrons derived from H2 or CO, or from organic substrates in the Wood–Ljugdahl pathway (WLP)....  相似文献   
5.
The accumulation of cyanobacterial biomass may severely affect the performance of aquatic consumers. Here, we investigated the role of sterols in determining the food quality of cyanobacteria for the invasive clam Corbicula fluminea, which has become a common benthic invertebrate in many freshwater ecosystems throughout the world. In standardized growth experiments, juvenile clams were fed mixtures of different cyanobacteria (Anabaena variabilis, Aphanothece clathrata, Synechococcus elongatus) or sterol-containing eukaryotic algae (Cryptomonas sp., Nannochloropsis limnetica, Scenedesmus obliquus). In addition, the cyanobacterial food was supplemented with different sterols. We provide evidence that somatic growth of C. fluminea on cyanobacterial diets is constrained by the absence of sterols, as indicated by a growth-enhancing effect of sterol supplementation. Thus, our findings contribute to our understanding of the consequences of cyanobacterial mass developments for benthic consumers and highlight the importance of considering sterols as potentially limiting nutrients in aquatic food webs.  相似文献   
6.
Two zoo-reared gorillas were each given nearly 400 h of mirror exposure. Extensive mirror gazing and social behaviors were exhibited, the frequency of which decreased gradually over the study period. Neither animal demonstrated the transition from other-directed to self-directed behavior characteristic of both chimpanzees and orangutans, and no evidence of self-recognition was found using the Gallup marking paradigm. These negative findings, after extensive mirror exposure, suggest that the gorilla may be the only great ape which lacks the conceptual ability necessary for self-recognition.  相似文献   
7.
Cultures of a cattle cell line and a Peromyscus eremicus cell line recovering from a pulse-treatment with mitomycin C, actinomycin D, 33258 Hoechst, and nitrosoguanidine exhibited translocations between chromosomes at the centromeric regions (Robertsonian fusions) as well as between centromere and telomere and between telomeres (tandem translocations). The frequency of Robertsonian fusions was found to be dose-dependent and duration-dependent with the mitomycin treatment. Biarmed chromosomes resulting from fusions may be monocentric or dicentric. Analyses of clones isolated from treated cells suggested that fused chromosomes may perpetuate in the cell populations.  相似文献   
8.
Acetogenic bacteria recently attracted attention because they reduce carbon dioxide (CO2) with hydrogen (H2) to acetate or to other products such as ethanol. Besides gases, acetogens use a broad range of substrates, but conversion of the sugar alcohol mannitol has rarely been reported. We found that the thermophilic acetogenic bacterium Thermoanaerobacter kivui grew on mannitol with a specific growth rate of 0.33 h−1 to a final optical density (OD600) of 2.2. Acetate was the major product formed. A lag phase was observed only in cultures pre-grown on glucose, not in those pre-grown on mannitol, indicating that mannitol metabolism is regulated. Mannitol-1-phosphate dehydrogenase (MtlD) activity was observed in cell-free extracts of cells grown on mannitol only. A gene cluster (TKV_c02830–TKV_c02860) for mannitol uptake and conversion was identified in the T. kivui genome, and its involvement was confirmed by deleting the mtlD gene (TKV_c02860) encoding the key enzyme MtlD. Finally, we overexpressed mtlD, and the recombinant MtlD carried out the reduction of fructose-6-phosphate with NADH, at a high VMAX of 1235 U mg−1 at 65°C. The enzyme was thermostable for 40 min at 75°C, thereby representing the first characterized MtlD from a thermophile.  相似文献   
9.

Thermophilic microorganisms as well as acetogenic bacteria are both considered ancient. Interestingly, only a few species of bacteria, all belonging to the family Thermoanaerobacteraceae, are described to conserve energy from acetate formation with hydrogen as electron donor and carbon dioxide as electron acceptor. This review reflects the metabolic differences between Moorella spp., Thermoanaerobacter kivui and Thermacetogenium phaeum, with focus on the biochemistry of autotrophic growth and energy conservation. The potential of these thermophilic acetogens for biotechnological applications is discussed briefly.

  相似文献   
10.
Caldicellulosiruptor bescii grows optimally at 78°C and is able to decompose high concentrations of lignocellulosic plant biomass without the need for thermochemical pretreatment. C. bescii ferments both C5 and C6 sugars primarily to hydrogen gas, lactate, acetate, and CO2 and is of particular interest for metabolic engineering applications given the recent availability of a genetic system. Developing optimal strains for technological use requires a detailed understanding of primary metabolism, particularly when the goal is to divert all available reductant (electrons) toward highly reduced products such as biofuels. During an analysis of the C. bescii genome sequence for oxidoreductase-type enzymes, evidence was uncovered to suggest that the primary redox metabolism of C. bescii has a completely uncharacterized aspect involving tungsten, a rarely used element in biology. An active tungsten utilization pathway in C. bescii was demonstrated by the heterologous production of a tungsten-requiring, aldehyde-oxidizing enzyme (AOR) from the hyperthermophilic archaeon Pyrococcus furiosus. Furthermore, C. bescii also contains a tungsten-based AOR-type enzyme, here termed XOR, which is phylogenetically unique, representing a completely new member of the AOR tungstoenzyme family. Moreover, in C. bescii, XOR represents ca. 2% of the cytoplasmic protein. XOR is proposed to play a key, but as yet undetermined, role in the primary redox metabolism of this cellulolytic microorganism.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号