首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
  9篇
  2017年   1篇
  2015年   1篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
排序方式: 共有9条查询结果,搜索用时 0 毫秒
1
1.
Fungal endophytes were isolated from Crataeva magna, a medicinal plant growing along the streams and rivers, constituting riparian vegetation in Karnataka, southern India. Fresh bark and twig pieces were used for the isolation using standard methods. Ninety-six endophytic fungal isolates were isolated from 800 bark and twig segments. Mitosporic fungi represented as a major group (85%) followed by zygomycetes (10%) and ascomycetes (5%). Bark samples contained more endophytes than twig samples. Verticillium, Nigrospora oryzae and Fusarium verticilloides were the dominant fungal endophytes.  相似文献   
2.
Endophytic fungi represent an interesting group of microorganisms associated with the healthy tissues of terrestrial plants. They represent a large reservoir of genetic diversity. Fungal endophytes were isolated from the inner bark segments of ethnopharmaceutically important medicinal tree species, namely Terminalia arjuna, Crataeva magna, Azadirachta indica, Holarrhena antidysenterica, Terminalia chebula, and Butea monosperma (11 individual trees), growing in different regions of southern India. Forty-eight fungal species were recovered from 2200 bark segments. Mitosporic fungi represented a major group (61%), with ascomycetes (21%) and sterile mycelia (18%) the next major groups. Species of Fusarium, Pestalotiopsis, Myrothecium, Trichoderma, Verticillium, and Chaetomium were frequently isolated. Exclusive fungal taxa were recovered from five of the six plant species considered for the study of endophytic fungi. Rarefaction indices for species richness indicated the highest expected number of species for bark segments were isolated from T. arjuna and A. indica (20 species each) and from C. magna (18 species).  相似文献   
3.
Salmonella enterica serotype Enteritidis is a major cause of nontyphoidal salmonellosis from ingestion of contaminated raw or undercooked shell eggs. Current techniques used to identify Salmonella serotype Enteritidis in eggs are extremely laborious and time-consuming. In this study, a novel eukaryotic cell culture system was combined with real-time PCR analysis to rapidly identify Salmonella serotype Enteritidis in raw shell eggs. The system was compared to the standard microbiological method of the International Organization for Standardization (Anonymous, Microbiology of food and animal feeding stuffs—horizontal method for the detection of Salmonella, 2002). The novel technique utilizes a mouse macrophage cell line (RAW 264.7) as the host for the isolation and intracellular replication of Salmonella serotype Enteritidis. Exposure of macrophages to Salmonella serotype Enteritidis-contaminated eggs results in uptake and intracellular replication of the bacterium, which can subsequently be detected by real-time PCR analysis of the DNA released after disruption of infected macrophages. Macrophage monolayers were exposed to eggs contaminated with various quantities of Salmonella serotype Enteritidis. As few as 10 CFU/ml was detected in cell lysates from infected macrophages after 10 h by real-time PCR using primer and probe sets specific for DNA segments located on the Salmonella serotype Enteritidis genes sefA and orgC. Salmonella serotype Enteritidis could also be distinguished from other non-serogroup D Salmonella serotypes by using the sefA- and orgC-specific primer and probe sets. Confirmatory identification of Salmonella serotype Enteritidis in eggs was also achieved by isolation of intracellular bacteria from lysates of infected macrophages on xylose lysine deoxycholate medium. This method identifies Salmonella serotype Enteritidis from eggs in less than 10 h compared to the more than 5 days required for the standard reference microbiological method of the International Organization for Standardization (Microbiology of food and animal feeding stuffs—horizontal method for the detection of Salmonella, 2002).Nontyphoidal salmonellosis is an invasive intestinal disease contracted predominately by ingestion of food contaminated with serotypes of the gram-negative bacterial species Salmonella enterica. Gastroenteritis caused by Salmonella spp. represents a large portion of the natural food-borne illnesses that occur worldwide each year. Bacterial virulence is established in part by the bacterium''s ability to invade and survive within host cells (20). S. enterica is capable of survival within a wide array of host cells, including epithelial cells, dendritic cells, and macrophages in both animal and cell culture models (16, 17, 18, 19). However, survival in macrophages is required for initiation of systemic infection (24). Two chromosomal pathogenicity islands, SPI-1 and SPI-2, which are present in all Salmonella enterica serotypes, are essential for the invasion of epithelial cells and intracellular replication in macrophages, respectively (13, 14).There are currently over 2,500 distinct serotypes of S. enterica (http://www.pasteur.fr/sante/clre/cadrecnr/salmoms/WKLM_2007.pdf). Of these, Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium are most commonly associated with food-borne illness in humans (4). Raw and undercooked shell eggs have been implicated as vehicles for the transmission of both of these serotypes of Salmonella enterica (9, 38). However, Salmonella serotype Enteritidis infection has been more frequently linked to shell egg consumption, whereas Salmonella serotype Typhimurium infection is more often associated with the consumption of contaminated chicken meat (8). Of the 309 documented outbreaks of Salmonella serotype Enteritidis in the United States from 1990 to 2001, 241 were attributed to the consumption of raw or undercooked eggs (6). Salmonella serotype Enteritidis phage types 4, 8, and 13 have been implicated in the majority of salmonellosis cases from the consumption of egg products (5). In addition, Salmonella serotype Enteritidis is able to colonize laying hen reproductive organs and developing eggs and has been shown to persist in eggs after they have been laid (23).A variety of methods have been developed in order to expedite the detection of salmonellae in eggs, including GeneQuence DNA hybridization, PCR analysis, and enzyme-linked immunosorbent assay (3, 27, 37). However, these methods require lengthy enrichment steps prior to the application of the respective methods. Real-time PCR (RT-PCR) is a promising new method currently used for detection of a wide variety of bacterial pathogens in food matrices (12, 15, 22, 34, 40). However, this technique can be ineffective for the detection of Salmonella serotype Enteritidis in foods such as eggs due to the presence of PCR-inhibitory components (41).In this study, we developed a novel detection system to allow for the specific identification of viable Salmonella serotype Enteritidis in raw shell eggs. The method developed is based on the ability of Salmonella to invade and replicate within macrophages as part of its life cycle within a host. In theory, cultured eukaryotic cell lines exposed to Salmonella-contaminated foods will allow the penetration and replication of Salmonella while confining food particles and noninvasive bacteria to the extracellular environment, allowing the isolation and enrichment of intracellular Salmonella for subsequent detection by commercially available techniques, such as RT-PCR. In practice, a suitable mammalian cell monolayer is exposed to a particular food matrix suspected of harboring salmonellae. The exposure is promoted for sufficient time to allow cell contact and engulfment of salmonellae. The mammalian cell monolayer is then washed sufficiently to remove the food matrix and extracellular microorganisms. The infected cell monolayer is reconstituted with fresh medium and further incubated to allow for intracellular multiplication of Salmonella (postinfection). After the infection is terminated, the culture medium is discarded, the infected cells are disrupted, and the DNA present in the resultant lysates is analyzed by RT-PCR using primers and probes specific for unique Salmonella DNA sequences. We utilized this method for the presumptive and confirmatory identification of Salmonella serotype Enteritidis in raw shell eggs.  相似文献   
4.
Much of what is known of the activities of polycystin-1 has been inferred from the effects of the isolated cytoplasmic COOH-terminal domain, but it is not clear whether the truncation acts like polycystin-1, as a dominant negative, or in unrelated pathways. To address this question, we have examined functional interactions between the intact and truncated forms of polycystin-1 in one cell system. In cells expressing only native polycystin-1, introduction of the truncation replicated the activity of the full-length protein. Conversely, when background levels of polycystin-1 were modestly elevated, the truncation acted as a dominant negative. Hence, the truncation acts in the polycystin pathway, but with effects that depend upon the background level of polycystin-1 expression. Our data raise the possibility that the cytoplasmic carboxyl terminus, either through cleavage products or intramolecular interactions, might feed back to modulate the activity of parent or intact polycystin-1.  相似文献   
5.
Cell surface lipoproteins are important for the full virulence of several bacterial pathogens, including Streptococcus pneumoniae. Processing of prolipoproteins seems to be conserved among different bacterial species, and requires type II signal peptidase (Lsp) mediated cleavage of the N-terminal signal peptide to form the mature lipoprotein. Lsp has been suggested as a target for new antibiotic therapies, but at present there are only limited data on the function of Lsp for Gram-positive bacterial pathogens. We have investigated the function and role during disease pathogenesis of the S. pneumoniae Lsp, which, blast searches suggest, is encoded by the gene Sp0928. Expression of Sp0928 protected Escherichia coli against the Lsp antagonist globomycin, and proteomics and immunoblot analysis demonstrated that deletion of Sp0928 prevented processing of S. pneumoniae prolipoproteins to mature lipoproteins. These data strongly suggest that Sp0928 encodes the S. pneumoniae Lsp. However, immunoblots of membrane-associated proteins, immunoelectron microscopy and flow cytometry assays all confirmed that in the absence of Lsp, immature lipoproteins were still attached to the cell surface. Despite preservation of lipoprotein attachment to the cell membrane, loss of S. pneumoniae Lsp resulted in several phenotypes associated with impaired lipoprotein function and reduced S. pneumoniae replication in animal models of infection.  相似文献   
6.
7.
8.
9.
Summary Fungal endophytes reside in healthy tissues of all terrestrial plant taxa studied to date and are diverse and abundant in tropical woody angiosperms. Endophytic fungi were isolated from Terminalia arjuna, an important ethno pharmacological plant extensively used in ayurvedic medicines to treat heart ailments. Isolations were made from symptomless fresh inner bark as well as twig samples of five plants collected from three locations of riparian vegetation during two seasons (monsoon and winter) of 2003 and 2004. Two hundred and seventy eight isolates, representing 22 genera, were obtained from both seasons. Monsoon seasonal isolations representing 22 genera showed greater diversity. Coelomycetes were more numerous during the winter season than hyphomycetes and ascomycetes. Among the endophytes, the genus Pestalotiopsis dominated the endophyte assemblage of T. arjuna collected from different locations, dominance was greater during the winter season than the monsoon season. Endophytic colonization frequency was greater in inner bark (18.5%) than twigs (4.6%). The genera Pestalotiopsis (54.5%), Chaetomium (10.5%) and Myrothecium (9%) were the most predominant endophytes. Rarefaction indices indicated the highest expected number of species for bark samples, monsoon isolations and location 1 (Mysore).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号