首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2004年   2篇
  1978年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Photosynthetic activities and the redox states of photosystem I (PSI) and photosystem II (PSII) in intact leaves of cucumber plants (Cucumis sativus L.), as well as the sucrose and starch contents were examined under conditions of ongoing soil water deficit imposed by the cessation of watering. As the soil drought progressed, the maximum rate of photosynthetic CO2 fixation was shown to decrease. These changes in the maximum photosynthetic rate occurred synchronously with changes in the maximum quantum yield of photosynthesis. Under soil water deficit, the reduced form of PSII primary acceptor Q A was accumulated only at photon flux densities of about 100 mol/(m2 s). At such photon flux densities, the changes in nonphotochemical quenching (qN) induced by soil water deficit were opposite to changes in photochemical quenching parameter (1 – qP). Irrespective of the duration of soil drought, the relationship between steady-state concentrations of photochemically inactive reaction centers of PSI and PSII (the fractions of P700 and Q A in the oxidized and reduced state, respectively) was almost linear, which provides evidence for the concerted operation of both photosystems. The conditions of soil water deficit promoted sucrose accumulation in the source leaf, which was paralleled by a substantial decrease in the amount of starch in the same leaf. The highest content of sucrose in the leaf after a 7-day drought was correlated with the largest decrease in photosynthetic activity. It is concluded that the progressive drought triggers an endogenous mechanism that regulates photosynthesis through feedback relations, namely, the inhibition of photosynthesis by its end products.  相似文献   
2.
Changes in photosynthetic activity, redox state of photosystem I (PSI) and photosystem II (PSII), as well as starch and sucrose content were studied on the source leaves of 18- to 20-day-old radish (Raphanus sativus L.) plants that were dark-adapted for 12 h and then exposed to continuous white light (170 mol quanta/(m2 s)). The kinetic pattern of photosynthetic activity comprised three phases. Within the first 6 h of light adaptation (first phase), the maximum photosynthetic rate and the quantum yield of photosynthesis increased 1.6 times in the illuminated leaves compared to the leaves of plants placed in darkness. Further illumination led to the decrease of both photosynthetic indices by about 20% (12 h after the onset of light exposure, second phase) and finally increased them to the level observed after 6-h light exposure (72 h, third phase). The stationary photooxidation level of PSI primary donor was relatively low within the first 6 h of light adaptation, and then it steeply increased. The linear relationship between the amounts of photoreduced PSII primary acceptor and photooxidized PSI primary donor did not change during prolonged light adaptation, showing a highly coordinated functioning of both photosystems. The amount of sucrose in leaves attained its peak after 12 h of light adaptation and did not change further on. The starch content increased to its peak within 24 h of illumination and decreased gradually upon longer exposures. It is concluded that, despite active export of assimilates to the developing storage organ, the source leaves exhibit a nonmonotonic temporal course of endogenously regulated photosynthetic activity, which was related to changes in the effectiveness and, possibly, the number of the components of photosynthetic apparatus.  相似文献   
3.
It was shown on model experiments that the microbiological method was not applicable for determination of levorin content in industrial intermediate products containing in addition levoristatin, since the presence of the latter made higher the results of the microbiological assay. Because of this till to the present date the quantitative content of levorin in the industrial intermediate products was determined photometrically using alcohol (pure solvent) as the reference solution. Still, this method also made higher the results of the assay, especially when the content of levorin was determined in the fermentation broth. In the solid phase levorin is contained in the mycelium which occupies only 1 to 2 per cent of the fermentation broth, while the liquid phase or the fermentation broth filtrate occupies 98 to 99 per cent. It was found that the fermentation broth filtrate contained protein admixtures which coagulated on addition of alcohol to the fermentation broth and formed fine colloid solutions. As a result the absorption values became higher. In the present study not the pure solvent but an extract of the fermentation broth filtrate containing neither levorin, nor levoristatin was used as the reference solution. Such a differential method provided elimination of all errors due to the presence of various metabolites in the fermentation broth filtrate which varied both qualitatively and quantitatively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号