首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   29篇
  2022年   3篇
  2021年   4篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   2篇
  2016年   7篇
  2015年   14篇
  2014年   18篇
  2013年   21篇
  2012年   31篇
  2011年   39篇
  2010年   24篇
  2009年   17篇
  2008年   18篇
  2007年   17篇
  2006年   15篇
  2005年   22篇
  2004年   21篇
  2003年   23篇
  2002年   28篇
  2001年   12篇
  2000年   8篇
  1999年   10篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1992年   8篇
  1991年   4篇
  1990年   3篇
  1989年   6篇
  1988年   4篇
  1987年   7篇
  1986年   2篇
  1985年   4篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1972年   4篇
  1968年   1篇
  1966年   2篇
  1964年   1篇
排序方式: 共有463条查询结果,搜索用时 46 毫秒
1.
2.
Using site-directed mutagenesis on the lactate dehydrogenase gene from Bacillus stearothermophilus, three amino acid substitutions have been made at sites in the enzyme which we suggest in part determine specificity toward different hydroxyacids (R-CHOH-COOH). To change the preferred substrates from the pyruvate/lactate pair (R = -CH3) to the oxaloacetate/malate pair (R = -CH2-COO-), the volume of the active site was increased (thr 246----gly), an acid was neutralized (asp-197----asn) and a base was introduced (gln-102 - greater than arg). The wild type enzyme has a catalytic specificity for pyruvate over oxaloacetate of 1000 whereas the triple mutant has a specificity for oxaloacetate over pyruvate of 500. Despite the severity and extent of these active site alterations, the malate dehydrogenase so produced retains a reasonably fast catalytic rate constant (20 s-1 for oxaloacetate reduction) and is still allosterically controlled by fructose-1,6-bisphosphate.  相似文献   
3.
The amino acid sequence of cytoplasmic malate dehydrogenase (sMDH) has been determined by a combination of X-ray crystallographic and chemical sequencing methods. The initial molecular model incorporated an "X-ray amino acid sequence" that was derived primarily from an evaluation of a multiple isomorphous replacement phased electron density map calculated at 2.5-A resolution. Following restrained least-squares crystallographic refinement, difference electron density maps were calculated from model phases, and attempts were made to upgrade the X-ray amino acid sequence. The method used to find the positions of peptides in the X-ray structure was similar to those used for studying protein homology and was shown to be successful for large fragments. For sMDH, X-ray methods by themselves were insufficient to derive a complete amino acid sequence, even with partial chemical sequence data. However, for this relatively large molecule at medium resolution, the electron density maps were of considerable help in determining the linear position of peptide fragments. The N-acetylated polypeptide chain of sMDH has 331 amino acids and has been crystallographically refined to an R factor of 19% for 2.5-A resolution diffraction data.  相似文献   
4.
The complete amino acid sequence of mitochondrial malate dehydrogenase from rat heart has been determined by chemical methods. Peptides used in this study were purified after digestions with cyanogen bromide, trypsin, endoproteinase Lys C, and staphylococcal protease V-8. The amino acid sequence of this mature enzyme is compared with that of the precursor form, which includes the primary structure of the transit peptide. The transit peptide is required for incorporation into mitochondria and appears to be homologous to the NH2-terminal arm of a related cytoplasmic enzyme, pig heart lactate dehydrogenase. The amino acid differences between the rat heart and pig heart mitochondrial malate dehydrogenases are analyzed in terms of the three-dimensional structure of the latter. Only 12/314 differences are found; most are conservative changes, and all are on or near the surface of the enzyme. We propose that the transit peptide is located on the surface of the mitochondrial malate dehydrogenase precursor.  相似文献   
5.
Rat intestinal fatty acid-binding protein (I-FABP) is an abundant cytoplasmic protein which is synthesized in the small intestinal lining cell where it is thought to participate in the absorption and intracellular metabolism of fatty acids. Each mole of this 132-residue polypeptide binds 1 mol of long chain fatty acid in a noncovalent fashion. Because of its small size and single ligand-binding site, I-FABP represents an attractive model for defining the molecular details of long chain fatty acid-protein interactions. The structure of Escherichia coli-derived rat I-FABP has now been solved to 2.5 A resolution using three isomorphous heavy atom derivatives. The protein consists of 10 anti-parallel beta-strands present as two orthogonal beta-sheets. Together a "clam shell-like" structure is formed with an opening located between two beta-strands and an interior that is lined with the side chains of nonpolar amino acids. The bound fatty acid ligand is located in the interior of the protein and has a bent conformation, possibly reflecting the presence of several gauche bonds in the hydrocarbon tail. Our present interpretation of the electron density map suggests that the fatty acid is oriented with its carboxylate group facing the guanidinium group of Arg127, whereas the end of its hydrocarbon tail is in close proximity to Val106. The indole side chain of Trp83 forms the molecular framework around which the principal bend of the hydrocarbon chain occurs.  相似文献   
6.
Z Xu  D A Bernlohr  L J Banaszak 《Biochemistry》1992,31(13):3484-3492
Adipocyte lipid-binding protein (ALBP) is the adipocyte member of an intracellular hydrophobic ligand-binding protein family. ALBP is phosphorylated by the insulin receptor kinase upon insulin stimulation. The crystal structure of recombinant murine ALBP has been determined and refined to 2.5 A. The final R factor for the model is 0.18 with good canonical properties. Crystalline ALBP has a conformation which is essentially identical to that of intestinal fatty acid binding protein and myelin P2 protein. Although the crystal structure is of the apo- form, a cavity resembling that in other family members is present. It contains a number of bound and implied unbound water molecules and shows no large obvious portal to the external milieu. The cavity of ALBP, which by homology is the ligand-binding site, is formed by both polar and hydrophobic residues among which is tyrosine 19. Y19 is phosphorylated by the insulin receptor kinase as described in the accompanying paper [Buelt, M. K., Xu, Z., Banaszak, L. J., & Bernlohr, D. A. (1992) Biochemistry (following paper in this issue)]. By comparing ALBP with the earlier structural results on intestinal fatty acid binding protein, it is now possible to delineate conserved amino acids which help form the binding site in this family.  相似文献   
7.
8.
Escherichia coli D-3-phosphoglycerate dehydrogenase (ePGDH) is a tetramer of identical subunits that is allosterically inhibited by L-serine, the end product of its metabolic pathway. Because serine binding affects the velocity of the reaction and not the binding of substrate or cofactor, the enzyme is classified as of the Vmax type. Inhibition by a variety of amino acids and analogues of L-serine indicate that all three functional groups of serine are required for optimal interaction. Removing or altering any one functional group results in an increase in inhibitory concentration from micromolar to millimolar, and removal or alteration of any two functional groups removes all inhibitory ability. Kinetic studies indicate at least two serine-binding sites, but the crystal structure solved in the presence of bound serine and direct serine-binding studies show that there are a total of four serine-binding sites on the enzyme. However, approximately 85% inhibition is attained when only two sites are occupied. The three-dimensional structure of ePGDH shows that the serine-binding sites reside at the interface between regulatory domains of adjacent subunits. Two serine molecules bind at each of the two regulatory domain interfaces in the enzyme. When all four of the serines are bound, 100% inhibition of activity is seen. However, because the domain contacts are symmetrical, the binding of only one serine at each interface is sufficient to produce approximately 85% inhibition. The tethering of the regulatory domains to each other through multiple hydrogen bonds from serine to each subunit apparently prevents the body of these domains from undergoing the reorientation that must accompany a catalytic cycle. It is suggested that part of the conformational change may involve a hinge formed in the vicinity of the union of two antiparallel beta-sheets in the regulatory domains. The tethering function of serine, in turn, appears to prevent the substrate-binding domain from closing the cleft between it and the nucleotide-binding domain, which may be necessary to form a productive hydrophobic environment for hydride transfer. Thus, the structure provides a plausible model that is consistent with the binding and inhibition data and that suggests that catalysis and inhibition in this rare Vmax-type allosteric enzyme is based on the movement of rigid domains about flexible hinges.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号