首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1585篇
  免费   140篇
  国内免费   1篇
  2023年   2篇
  2022年   22篇
  2021年   51篇
  2020年   19篇
  2019年   31篇
  2018年   46篇
  2017年   36篇
  2016年   61篇
  2015年   99篇
  2014年   101篇
  2013年   101篇
  2012年   118篇
  2011年   121篇
  2010年   73篇
  2009年   81篇
  2008年   99篇
  2007年   98篇
  2006年   89篇
  2005年   86篇
  2004年   89篇
  2003年   80篇
  2002年   69篇
  2001年   8篇
  2000年   12篇
  1999年   20篇
  1998年   14篇
  1997年   2篇
  1996年   10篇
  1995年   8篇
  1994年   10篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   5篇
  1985年   4篇
  1982年   3篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1942年   3篇
  1919年   1篇
  1915年   1篇
排序方式: 共有1726条查询结果,搜索用时 31 毫秒
1.
2.
3.
Titration of Asp-85, the proton acceptor and part of the counterion in bacteriorhodopsin, over a wide pH range (2-11) leads us to the following conclusions: 1) Asp-85 has a complex titration curve with two values of pKa; in addition to a main transition with pKa = 2.6 it shows a second inflection point at high pH (pKa = 9.7 in 150-mM KCl). This complex titration behavior of Asp-85 is explained by interaction of Asp-85 with an ionizable residue X'. As follows from the fit of the titration curve of Asp-85, deprotonation of X' increases the proton affinity of Asp-85 by shifting its pKa from 2.6 to 7.5. Conversely, protonation of Asp-85 decreases the pKa of X' by 4.9 units, from 9.7 to 4.8. The interaction between Asp-85 and X' has important implications for the mechanism of proton transfer. In the photocycle after the formation of M intermediate (and protonation of Asp-85) the group X' should release a proton. This deprotonated state of X' would stabilize the protonated state of Asp-85.2) Thermal isomerization of the chromophore (dark adaptation) occurs on transient protonation of Asp-85 and formation of the blue membrane. The latter conclusion is based on the observation that the rate constant of dark adaptation is directly proportional to the fraction of blue membrane (in which Asp-85 is protonated) between pH 2 and 11. The rate constant of isomerization is at least 10(4) times faster in the blue membrane than in the purple membrane. The protonated state of Asp-85 probably is important for the catalysis not only of all-trans <=> 13-cis thermal isomerization during dark adaptation but also of the reisomerization of the chromophore from 13-cis to all-trans configuration during N-->O-->bR transition in the photocycle. This would explain why Asp-85 stays protonated in the N and O intermediates.  相似文献   
4.
Investigations of biological effects of prolonged elevation of growth hormone in animals such as mice and rats require large amounts of mouse and rat growth hormone (GH) materials. As an alternative to scarce and expensive pituitary derived materials, both mouse and rat GH were expressed in NSO murine myeloma cells transfected with a vector containing the glutamine synthetase (GS) gene and two copies of mouse or rat GH cDNA. For optimal expression, the mouse GH vector also contained sequences for targeting integration by homologous recombination. Fed-batch culture processes for such clones were developed using a serum-free, glutamine-free medium and scaled up to 250 L production scale reactors. Concentrated solutions of proteins, amino acids and glucose were fed periodically to extend cell growth and culture lifetime, which led to an increase in the maximum viable cell concentration to 3.5×109 cells/L and an up to 10 fold increase in final mouse and rat rGH titers in comparison with batch cultures. For successful scale up, similar culture environmental conditions were maintained at different scales, and specific issues in large scale reactors such as balancing oxygen supply and carbon dioxide removal, were addressed. Very similar cell growth and protein productivity were obtained in the fed-batch cultures at different scales and in different production runs. The final mouse and rat rGH titers were approximately 580 and 240 mg/L, respectively. During fed-batch cultures, the cell growth stage transition was accompanied by a change in cellular metabolism. The specific glucose consumption rate decreased significantly after the transition from the growth to stationary stage, while lactate was produced in the exponential growth stage and became consumed in the stationary stage. This was roughly coincident with the beginning of ammonia and glutamate accumulation at the entry of cells into the stationary stage as the result of a reduced glutamine consumption and periodic nutrient additions.  相似文献   
5.
Quantum efficiency of the photochemical cycle of bacteriorhodopsin   总被引:4,自引:3,他引:1       下载免费PDF全文
Values in the literature for the quantum efficiency of the photochemical cycle of bacteriorhodopsin (bR) range from 0.25 to 0.79 and the sum of the quantum yields of the forward and back photoreactions [Formula: see text] has been proposed to be 1. In the present work, low intensity laser flashes (532 nm) and kinetic spectroscopy were used to determine the quantum efficiency of bR photoconversion, [UNK]bR, by measuring transient bleaching of bR at 610 nm in the millisecond time scale. Bovine rhodopsin (R) in 2% ammonyx LO was used as a photon counter. We find that the ratio of the quantum yields of bacteriorhodopsin photoconversion and bleaching of rhodopsin, [UNK]bR/[UNK]R, is 0.96 ± 0.04. Based on the quantum yield of the photobleaching of rhodopsin, 0.67, the quantum efficiency of bR photoconversion was determined to be 0.64 ± 0.04. The quantum yield of M formation was found to be 0.65 ± 0.06. From the transient bleaching of bR at 610 nm with a saturating laser flash (28 mJ/cm2) the maximum amount of bR cycling was estimated to be 47 ± 3%. From this value and the spectrum of K published in the literature, the ratio of the efficiencies of the forward and back light reactions, [UNK]1/[UNK]2, was estimated to be 0.67 ± 0.06 and so [UNK]2 ≈ 1 (0.94 ± 0.06). The sum of [UNK]1 + [UNK]2 ≈ 1.6. It was found that repeated high-intensity laser flashes (>20 mJ/cm2) irreversibly transformed bR into two stable photoproducts. One has its absorption maximum at 605 nm and the other has a well-resolved vibronic spectrum with maxima at 342, 359 (main peak), and 379 nm. The quantum yield of the formation of the photoproducts is ≈ 10-4.  相似文献   
6.
Summary When Clostridium acetobutylicum was grown in continuous culture under glucose limitation at neutral pH and varying dilution rates the only fermentation products formed were acetate, butyrate, carbon dioxide and molecular hydrogen. The Y glucose max and (Y ATP max ) gluc exp values were 48.3 and 23.8 dry weight/mol, respectively. Acetone and butanol were produced when the pH was decreased below 5.0 (optimum at pH 4.3). The addition of butyric acid (20 to 80 mM) to the medium with a pH of 4.3 resulted in a shift of the fermentation from acid, to solvent formation.A preliminary report of part of this work was presented at a symposium Trends in the Biology of Fermentations for Fuels and Chemicals held December 7–11, 1980, at Brookhaven National Laboratory, Upton, New York; Gottschalk and Bahl 1981  相似文献   
7.
Stereospecific binding of apomorphine to rat brain opiate receptors was shown by assaying the competition of 7,8(n)--3H--naloxone and D-ala2-tyrosyl-3,5-3H--enkephalin (5-D-leucine) for opiate receptor binding. EC-NaCl50, the concentration of apomorphine which inhibited 50% binding of the radioactive naloxone and D-ala2, D-leu5-enkephalin in the absence of NaCl were 20 and 42 microM, respectively. EC+NaCl 50, the concentration of apomorphine which inhibited 50% binding of the radioactive naloxone in the presence of 100 mM NaCl was 17 microM. From the ratio of EC+NaCl 50 to EC-NaCl the value of "sodium shift" of effective concentration can be calculated as 0.85. From the data obtained it is concluded that apomorphine, like naloxone, is a "pure" antagonist but it has much less affinity for enkephalin and opiate binding sites. The probable mechanisms of the pharmacological action of apomorphine are discussed.  相似文献   
8.
Ohne ZusammenfassungDie Arbeit wurde dem R. Istituto Lombardo Scienze e Lettere am 5. Juni 1934 vorgelegt (Rend. 67, 671, 1934).  相似文献   
9.
10.
Urbanization affects key aspects of wildlife ecology. Dispersal in urban wildlife species may be impacted by geographical barriers but also by a species’ inherent behavioural variability. There are no functional connectivity analyses using continuous individual‐based sampling across an urban‐rural continuum that would allow a thorough assessment of the relative importance of physical and behavioural dispersal barriers. We used 16 microsatellite loci to genotype 374 red foxes (Vulpes vulpes) from the city of Berlin and surrounding rural regions in Brandenburg in order to study genetic structure and dispersal behaviour of a mobile carnivore across the urban‐rural landscape. We assessed functional connectivity by applying an individual‐based landscape genetic optimization procedure. Three commonly used genetic distance measures yielded different model selection results, with only the results of an eigenvector‐based multivariate analysis reasonably explaining genetic differentiation patterns. Genetic clustering methods and landscape resistance modelling supported the presence of an urban population with reduced dispersal across the city border. Artificial structures (railways, motorways) served as main dispersal corridors within the cityscape, yet urban foxes avoided densely built‐up areas. We show that despite their ubiquitous presence in urban areas, their mobility and behavioural plasticity, foxes were affected in their dispersal by anthropogenic presence. Distinguishing between man‐made structures and sites of human activity, rather than between natural and artificial structures, is thus essential for better understanding urban fox dispersal. This differentiation may also help to understand dispersal of other urban wildlife and to predict how behaviour can shape population genetic structure beyond physical barriers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号