首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   10篇
  2002年   3篇
  2001年   3篇
  1999年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1987年   1篇
排序方式: 共有61条查询结果,搜索用时 62 毫秒
1.
A two‐photon fluorescence lifetime (2P‐FLIM) microendoscope, capable of energetic metabolism imaging through the intracellular nicotinamide adenine dinucleotide (NADH) autofluorescence, at sub‐cellular resolution, is demonstrated. It exhibits readily usable characteristics such as convenient endoscope probe diameter (≈2 mm), fiber length (>5 m) and data accumulation rate (16 frames per second (fps)), leading to a FLIM refreshing rate of ≈0.1 to 1 fps depending on the sample. The spiral scanning image formation does not influence the instrument response function (IRF) characteristics of the system. Near table‐top microscope performances are achieved through a comprehensive system including a home‐designed spectro‐temporal pulse shaper and a custom air‐silica double‐clad photonic crystal fiber, which enables to reach up to 40 mW of ≈100 fs pulses @ 760 nm with a 80 MHz repetition rate. A GRadient INdex (GRIN) lens provides a lateral resolution of 0.67 μm at the focus of the fiber probe. Intracellular NADH fluorescence lifetime data are finally acquired on cultured cells at 16 fps.   相似文献   
2.
We have measured the transition temperatures, T(M), and van't Hoff enthalpies, DeltaH(M), of the thermally induced native-to-unfolded (N-to-U) and molten globule-to-unfolded (MG-to-U) transitions of cytochrome c at pressures between 50 and 2200 bar. We have used the pressure dependence of T(M) to evaluate the changes in volume, Delta(v), accompanying each protein transition event as a function of temperature and pressure. From analysis of the temperature and pressure dependences of Delta(v), we have additionally calculated the changes in expansibility, Delta(e), and isothermal compressibility, Delta(k)(T), associated with the thermally induced conformational transitions of cytochrome c. Specifically, if extrapolated to 25 degrees C, the native-to-unfolded (N-to-U) transition is accompanied by changes in volume, Delta(v), expansibility, Delta(e), and isothermal compressibility, Delta(k)(T), of -(5 +/- 3) x 10(-3) cm(3) g(-1), (1.8 +/- 0.3) x 10(-4) cm(3) g(-1) K(-1), and approximately 0 cm(3) g(-1) bar(-1), respectively. The molten globule-to-unfolded (MG-to-U) transition is accompanied by changes in volume, Delta(v), and isothermal compressibility, Delta(k)(T), of -(2.9 +/- 0.3) x 10(-3) cm(3) g(-1) at 40 degrees C and -(1.9 +/- 0.3) x 10(-6) cm(3) g(-1) bar(-1) at 35 degrees C, respectively. By comparing the volumetric properties of the N-to-U and N-to-MG transitions of cytochrome c, we have estimated the properties of the native-to-molten globule (N-to-MG) transition. For the latter transition, the changes in volume, Delta(v), and isothermal compressibility, Delta(k)(T), are approximately 0 cm(3) g(-1) at 40 degrees C and 1.9 cm(3) g(-1) bar(-1) at 35 degrees C, respectively. Our estimate for the change in expansibility, Delta(e), upon the N-to-MG is negative and equal to -(5 +/- 3) x 10(-4) cm(3) g(-1) K(-1). This finding contrasts with the results of previous studies all of which report positive changes in expansibility associated with protein denaturation. In general, our volumetric data permit us to assess the combined effect of temperature and pressure on the stability of various conformational states of cytochrome c.  相似文献   
3.
4.
Filfil R  Chalikian TV 《FEBS letters》2003,554(3):351-356
The binding of D-glucose to hexokinase PII at 25 degrees C and pH 8.7 has been investigated by a combination of ultrasonic velocimetry, high precision densimetry, and fluorescence spectroscopy. The binding of glucose to the enzyme results in significant dehydration of the two interacting molecules, while the intrinsic coefficient of adiabatic compressibility of hexokinase slightly decreases. Glucose-hexokinase association is an entropy-driven process. The favorable change in entropy results from compensation between two large contributions. The binding-induced increase in hydrational entropy slightly prevails over the decrease in the configurational entropy of the enzyme. Taken together, our results emphasize the crucial role of water in modulating the energetics of protein recognition.  相似文献   
5.
In the present work fluctuations of number of ligands adsorbed on macromolecule are investigated. We have taken into account the adsorption and desorption of ligands under the circumstance of some adsorption centers fluctuations affected by medium fluctuation. The correlation function and spectral density of number of ligands adsorbed on macromolecule are calculated. The properties of these fluctuations which allow identifying a noisemaker are determined. It has been shown, thatfas andsluggis adsorption can be distinguished by properties of dispersion and spectral density. It has been also shown, that comparison of experimental and theoretical correlation functions (or spectral densities) allows to calculate constants of ligand - adsorption center binding and unbinding.  相似文献   
6.
Microbeam radiation therapy is an experimental modality using parallel arrays of thin (<100 micro m) slices of synchrotron-generated X rays (microplanar beams, microbeams). We used EMT-6 murine mammary carcinoma subcutaneously inoculated in the hind legs of mice to compare the therapeutic efficacies of single-fraction, unidirectional (1) "co-planar" microbeams (an array of vertically oriented microplanar beams), (2) "cross-planar" microbeams (two arrays of parallel microbeams propagated in the same direction, one with vertically and the other with horizontally oriented microplanar beams), and (3) seamless (broad) beams from the same synchrotron source. The microbeams were 90 micro m wide and were spaced 300 micro m on center; the median energy in all beams was 100 or 118 keV. Tumor ablation rates were 4/8, 4/8 and 6/7 for a 410-, 520- and 650-Gy in-slice cross-planar microbeam dose, respectively, and 1/8, 3/8, 3/7 and 6/8 for a 23-, 30-, 38- and 45-Gy broad-beam dose, respectively. When the data were pooled from the three highest doses (same average tumor ablations of 50-60%), the incidences of normal-tissue acute toxicity (moist desquamation and epilation) and delayed toxicity (failure of hair regrowth) were significantly lower for cross-planar microbeams than broad beams (P < 0.025). Furthermore, for the highest doses in these two groups, which also had the same tumor ablation rate (>75%), not only were the above toxicities lower for the cross-planar microbeams than for the broad beams (P < 0.02), but severe leg dysfunction was also lower (P < 0.003). These findings suggest that single-fraction microbeams can ablate tumors at high rates with relatively little normal-tissue toxicity.  相似文献   
7.
We have investigated the binding of bovine pancreatic trypsin inhibitor (BPTI) to bovine trypsinogen by combining ultrasonic velocimetry, high precision densimetry, and fluorescence spectroscopy. We report the changes in volume, adiabatic compressibility, van't Hoff enthalpy, entropy, and free energy that accompany the association of the two proteins at 25 degrees C and pH 8.0. We have used the measured changes in volume and compressibility in conjunction with available structural data to characterize the binding-induced changes in the hydration properties and intrinsic packing of the two proteins. Our estimate reveals that 110 +/- 40 water molecules become released to the bulk from the hydration shells of BPTI and trypsinogen. Furthermore, we find that the intrinsic coefficient of adiabatic compressibility of the two proteins decreases by 14 +/- 2%, which is suggestive of the binding-induced rigidification of the proteins' interior. BPTI-trypsinogen association is an entropy-driven event which proceeds with an unfavorable change in enthalpy. The favorable change in entropy results from partial compensation between two predominant terms. Namely, a large favorable change in hydrational entropy slightly prevails over a close in magnitude but opposite in sign change in configurational entropy. The reduction in configurational entropy and, consequently, protein dynamics is consistent with the observed decrease in intrinsic compressibility. In general, results of this work emphasize the vital role that water plays in modulating protein recognition events.  相似文献   
8.

Objectives

Glucagon-like peptide 2 (GLP2) is an intestinal growth factor that has been shown to stimulate intestinal growth and reduce disease severity in preclinical models of short bowel syndrome and inflammatory bowel disease. Teduglutide, a recombinant human GLP2 variant (GLP2-2G), has increased half-life and stability as compared to the native GLP2 peptide, but still requires twice daily dosing in preclinical models and daily dosing in the clinic. The goal of this study was to produce and characterize the preclinical pharmacokinetic and therapeutic properties of GLP2-2G-XTEN, a novel, long-acting form of GLP2-2G.

Methodology and Results

A GLP2-2G-XTEN fusion protein with extended exposure profile was produced by genetic fusion of GLP2-2G peptide to XTEN, a long, unstructured, non-repetitive, hydrophilic sequence of amino acids. The serum half-life of GLP2-2G-XTEN in mice, rats and monkeys was 34, 38 and 120 hours, respectively. Intestinotrophic effects were demonstrated in normal rats, where GLP2-2G-XTEN administration resulted in a significant increase in both small intestine weight and length. Efficacy of the GLP2-2G-XTEN protein was compared to that of GLP2-2G peptide in a rat Crohn’s disease model, indomethacin-induced inflammation. Prophylactic administration of GLP2-2G-XTEN significantly increased the length, reduced the number of trans-ulcerations and adhesions, and reduced the TNFα content of the small intestine. GLP2-2G-XTEN demonstrated greater in vivo potency as compared to GLP2-2G peptide, and improvement in histopathology supported the GLP2-2G-XTEN treatment effects.

Conclusions and Significance

GLP2-2G-XTEN is intestinotrophic and demonstrates efficacy in a rat Crohn’s disease model requiring a lower molar dose and less frequent dosing relative to GLP2-2G peptide. Allometric scaling based on pharmacokinetics from mouse, rat and monkey projects a human half-life of 240 hours. These improvements in preclinical pharmacokinetics and dosing indicate that GLP2-2G-XTEN may offer a superior therapeutic benefit for treatment of gastrointestinal diseases including Crohn’s disease.  相似文献   
9.
Two cardioexcitatory and one cardioinhibitory neural groups have been previously identified as the central cardioregulatory system in the pteropod mollusk Clione limacina. We describe in this study one additional element of the central cardioregulatory system, which consists of a large intestinal neuron named Z-cell with a novel effect on the heart activity. Intracellular stimulation of the Z-cell induced only auricle contractions with no effect on the ventricle activity. The Z-cell processes were traced down to the heart, and vigorous branching was found in the auricle tissue. Specific patterns of activity of the Z-cell as well as intestinal heart excitatory and inhibitory neurons were studied during initiation of two behaviors-whole body withdrawal and escape swimming. It was found that initiation of both behaviors was accompanied by activation of Z-cell and intestinal heart excitor neurons. The firing rate of neurons induced by sensory stimuli was sufficient to trigger auricle contractions in the semi-intact preparations. Video analysis of heart activity revealed that auricle indeed was activated during both active and passive avoidance reactions, though the intensity and delay of the activation were different. The possible physiological role of the auricle contractions during antagonistic forms of behavior is discussed.  相似文献   
10.
Duck embryo was studied as a model for assessing the effects of microbeam radiation therapy (MRT) on the human infant brain. Because of the high risk of radiation-induced disruption of the developmental process in the immature brain, conventional wide-beam radiotherapy of brain tumors is seldom carried out in infants under the age of three. Other types of treatment for pediatric brain tumors are frequently ineffective. Recent findings from studies in Grenoble on the brain of suckling rats indicate that MRT could be of benefit for the treatment of early childhood tumors. In our studies, duck embryos were irradiated at 3-4 days prior to hatching. Irradiation was carried out using a single exposure of synchrotron-generated X-rays, either in the form of parallel microplanar beams (microbeams), or as non-segmented broad beam. The individual microplanar beams had a width of 27 microm and height of 11 mm, and a center-to-center spacing of 100 microm. Doses to the exposed areas of embryo brain were 40, 80, 160 and 450 Gy (in-slice dose) for the microbeam, and 6, 12 and 18 Gy for the broad beam. The biological end point employed in the study was ataxia. This neurological symptom of radiation damage to the brain developed within 75 days of hatching. Histopathological analysis of brain tissue did not reveal any radiation induced lesions for microbeam doses of 40-160 Gy (in-slice), although some incidences of ataxia were observed in that dose group. However, severe brain lesions did occur in animals in the 450 Gy microbeam dose groups, and mild lesions in the 18 Gy broad beam dose group. These results indicate that embryonic duck brain has an appreciably higher tolerance to the microbeam modality, as compared to the broad beam modality. When the microbeam dose was normalized to the full volume of the irradiated tissue. i.e., the dose averaged over microbeams and the space between the microbeams, brain tolerance was estimated to be about three times higher to microbeam irradiation as compared with broad beam irradiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号