首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3272篇
  免费   204篇
  国内免费   2篇
  2022年   16篇
  2021年   50篇
  2020年   28篇
  2019年   52篇
  2018年   49篇
  2017年   51篇
  2016年   79篇
  2015年   91篇
  2014年   104篇
  2013年   209篇
  2012年   185篇
  2011年   203篇
  2010年   114篇
  2009年   116篇
  2008年   193篇
  2007年   169篇
  2006年   172篇
  2005年   153篇
  2004年   145篇
  2003年   148篇
  2002年   132篇
  2001年   89篇
  2000年   71篇
  1999年   70篇
  1998年   26篇
  1997年   26篇
  1996年   23篇
  1995年   28篇
  1994年   22篇
  1993年   21篇
  1992年   65篇
  1991年   57篇
  1990年   47篇
  1989年   32篇
  1988年   29篇
  1987年   32篇
  1986年   32篇
  1985年   34篇
  1984年   26篇
  1983年   20篇
  1981年   18篇
  1980年   17篇
  1979年   19篇
  1977年   17篇
  1976年   16篇
  1975年   27篇
  1974年   17篇
  1973年   17篇
  1969年   15篇
  1968年   15篇
排序方式: 共有3478条查询结果,搜索用时 15 毫秒
1.
2.
Cerebellar granule cells (CGNs) are one of many neurons that express phasic and tonic GABAergic conductances. Although it is well established that Golgi cells (GoCs) mediate phasic GABAergic currents in CGNs, their role in mediating tonic currents in CGNs (CGN-Itonic) is controversial. Earlier studies suggested that GoCs mediate a component of CGN-Itonic that is present only in preparations from immature rodents. However, more recent studies have detected a GoC-dependent component of CGN-Itonic in preparations of mature rodents. In addition, acute exposure to ethanol was shown to potentiate the GoC component of CGN-Itonic and to induce a parallel increase in spontaneous inhibitory postsynaptic current frequency at CGNs. Here, we tested the hypothesis that these effects of ethanol on GABAergic transmission in CGNs are mediated by inhibition of the Na+/K+-ATPase. We used whole-cell patch-clamp electrophysiology techniques in cerebellar slices of male rats (postnatal day 23–30). Under these conditions, we reliably detected a GoC-dependent component of CGN-Itonic that could be blocked with tetrodotoxin. Further analysis revealed a positive correlation between basal sIPSC frequency and the magnitude of the GoC-dependent component of CGN-Itonic. Inhibition of the Na+/K+-ATPase with a submaximal concentration of ouabain partially mimicked the ethanol-induced potentiation of both phasic and tonic GABAergic currents in CGNs. Modeling studies suggest that selective inhibition of the Na+/K+-ATPase in GoCs can, in part, explain these effects of ethanol. These findings establish a novel mechanism of action of ethanol on GABAergic transmission in the central nervous system.  相似文献   
3.
4.
Okadaic acid, a potent inhibitor of Type 1 and Type 2A protein phosphatases, was used to investigate the mechanism of insulin action on membrane-bound low Km cAMP phosphodiesterase in rat adipocytes. Upon incubation of cells with 1 microM okadaic acid for 20 min, phosphodiesterase was stimulated 3.7- to 3.9-fold. This stimulation was larger than that elicited by insulin (2.5- to 3.0-fold). Although okadaic acid enhanced the effect of insulin, the maximum effects of the two agents were not additive. When cells were pretreated with 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), the level of phosphodiesterase stimulation by okadaic acid was rendered smaller, similar to that attained by insulin. In cells that had been treated with 2 mM KCN, okadaic acid (like insulin) failed to stimulate phosphodiesterase, suggesting that ATP was essential. Also, as reported previously, the effect of insulin on phosphodiesterase was reversed upon exposure of hormone-treated cells to KCN. This deactivation of previously-stimulated phosphodiesterase was blocked by okadaic acid, but not by insulin. The above KCN experiments were carried out with cells in which A-kinase activity was minimized by pretreatment with H-7. Okadaic acid mildly stimulated basal glucose transport and, at the same time, strongly inhibited the action of insulin thereon. It is suggested that insulin may stimulate phosphodiesterase by promoting its phosphorylation and that the hormonal effect may be reversed by a protein phosphatase which is sensitive to okadaic acid. The hypothetical protein kinase thought to be involved in the insulin-dependent stimulation of phosphodiesterase appears to be more H-7-resistant than A-kinase.  相似文献   
5.
6.
Studies were made on the position and dynamics of the OH-group of alpha-tocopherol in phospholipid membranes. There was no difference in the spin-lattice (T1) relaxation times at the 5a-position of alpha-tocopherol labeled with 13C- or C19F3-determined from the nuclear magnetic resonance (NMR) spectra of liposomes positively charged with stearylamine (SA) and negatively charged with dicetylphosphate (DCP). The zeta-potentials of egg yolk phosphatidylcholine (EYPC) liposomes with and without SA or DCP were not affected by incorporation of 20 mol% alpha-tocopherol, though incorporation of 10 mol% ascorbyl-palmitate decreased the zeta-potentials of EYPC and EYPC-SA liposomes. The P==O stretching band (1235 cm-1) of the phosphate group and C==O stretching band (1734 cm-1) of the acyl ester linkage in dimyristoylphosphatidylcholine (DMPC) liposomes, measured by Fourier transform-infrared (FT-IR) spectroscopy, were not changed by incorporation of alpha-tocopherol. These results suggest that no specific interaction occurred between the OH-group of alpha-tocopherol and the polar interfacial region of the bilayer. The dynamic quenching effects of n-(N-oxy-4,4'-dimethyloxazolidine-2-yl)stearic acids (n-NSs) on the intrinsic fluorescence of alpha-tocopherol were in the order 5-NS > 7-NS = 12-NS > 16-NS. Acrylamide, a water-soluble fluorescence quencher with a very low capacity to penetrate through phospholipid bilayers, had very low quenching efficiency. These results indicate that the bulk of the chromanol moiety of alpha-tocopherol is located in a position close to that occupied by the nitroxide group of 5-NS in the membranes and is poorly exposed at the membrane surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
7.
8.
Viable cells of Saccharomyces cerevisiae 4484-24D-1 mutant strain were treated with an Arthrobacter sp. beta-1,3-glucanase, Zymolyase-60,000, in the presence of a serine protease inhibitor, phenylmethylsulfonyl fluoride. Fractionation of the solubilized materials with Cetavlon (cetyltrimethylammonium bromide) yielded a purified mannan-protein complex, which had a molecular weight of ca. 150,000, approximately three times higher than that of the mannan isolated from the same cells by the hot-water extraction method at 135 C. The amino acid composition of the mannan-protein complex was found to be very similar to that of the mannan-protein complexes of S. cerevisiae X2180-1A wild and S. cerevisiae X2180-1A-5 mutant strains, indicating the presence of large amounts of serine and threonine. It was unexpected that the antibody-precipitating activity of this complex against the homologous anti-whole cell serum was about twice as great as that of the mannan isolated by hot-water extraction. Treatment of this complex with 100 mM NaOH, hot water at 135 C, and pronase, respectively, gave degradation products having the same molecular weight and antibody-precipitating activity as those of the hot-water extracted mannan, allowing the assumption that the protein moiety participated in a large part of this activity.  相似文献   
9.
10.
Mitochondrial dysfunction in ischemic liver has been demonstrated to be due to decrease in the intramitochondrial level of ATP and the subsequent disruption of the proton barrier of the inner membrane (Watanabe, F., Hashimoto, T. and Tagawa, K. (1985) J. Biochem. 97, 1229-1234). In this study, another injury process, impairment of the electron-transfer system, which occurred during reoxygenation of ischemic liver, was studied during reperfusion of cold preserved liver and during cold incubation of isolated rat-liver mitochondria. The sites of the respiratory chain that were sensitive to peroxidative damage were ubiquinone-cytochrome c oxidoreductase and NADH-ubiquinone oxidoreductase. These enzymic activities decreased with increase in lipid peroxidation. Incubation of submitochondrial particles with t-butyl hydroperoxide or with an NADPH-dependent peroxidation system decreased the enzymic activities of the electron-transport system. These data strongly suggested that lipid peroxidation during reoxygenation of ischemic liver impaired the electron-transfer system. Thus, mitochondria of ischemic liver suffer from two different types of injury: increase in proton permeability during anoxia, and decrease in enzymic activities of the electron-transport system during reoxygenation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号