首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  1992年   1篇
  1989年   1篇
排序方式: 共有25条查询结果,搜索用时 25 毫秒
1.
This study was designed to study the effects of the potential radioprotective properties of pharmacological doses of melatonin against organ damage induced by whole-body irradiation (IR) in rats. A total of 32 male Sprague-Dawley rats were exposed to irradiation performed with a LINAC producing 6 MV photons at a focus 100 cm distant from the skin. Under ketamine anaesthesia, each rat received a single whole-body dose of 800 cGy. Immediately before and after IR, rats were treated with either saline or melatonin (20 mg/kg and 10 mg/kg, i.p.) and decapitated at 12-h after exposure to irradiation. Another group of rats was followed for 72-h after IR, where melatonin (10 mg/kg, i.p.) injections were repeated once daily. Tissue levels of malondialdehyde (MDA)--an index of lipid peroxidation--, glutathione (GSH)--a key to antioxidant--and myeloperoxidase (MPO) activity--an index of neutrophil infiltration--were estimated in liver, lung, colon and intestinal tissues. The results demonstrate that both 12-h and 72-h following IR, tissue levels of MDA were elevated (p<0.05-0.001), while GSH levels were reduced (p<0.05-0.001) in all organs. On the other hand, melatonin, reduced the levels of MDA and increased the GSH levels significantly, (p<0.05-0.001). MPO activity was increased significantly in the colonic tissue at the both 12-h and 72-h, and in the hepatic tissue at the 72-h following IR, which were reduced by melatonin (p<0.01-0.001). In the lung tissue enzyme activity was decreased at 72nd h of post-irradiation. In conclusion, the increase in MDA levels and MPO activity and the concomitant decrease in GSH levels demonstrate the role of oxidative mechanisms in irradiation-induced tissue damage, and melatonin, by its free radical scavenging and antioxidant properties, ameliorates irradiation-induced organ injury. Thus, supplementing cancer patients with adjuvant therapy of melatonin may have some benefit for successful radiotherapy.  相似文献   
2.
In this study, we investigated the effects of Nigella sativa, vitamins C and E, and selenium on the levels of trace elements in the serum of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)-injected rabbits. The rabbits were separated into one control and three experimental groups, each consisting of eight rabbits. MNNG was administered to all rabbits at a dose of 20 mg/kg. Group A received a suspension of N. sativa, group B received a combination of vitamins C and E and selenium, and group C received MNNG without any additional treatment. Group D did not receive any treatment and acted as control. The concentrations of serum zinc, copper, and iron were determined for groups A, B, C, and D. The zinc levels were 155.3±25.8, 304.7±14.22, 117.2±27.9, and 87.0±8 μ/dL for groups A-D, respectively; copper was measured at 234.8±31.9, 214.3±14.2, 196.5±19.3, and 359.2±19.9 μ/dL and iron levels were 276.3±10.71, 260.8±7.15, 211.2±13.47, and 223.4±9.5 μ/dL, in the stated group order. There were statistically significant differences between groups (p<0.05). The results obtained in this work may be of use for monitoring and preventing the nocive effects of N-methyl-N′-nitro-N-nitrosoguanidine and similar carcinogens.  相似文献   
3.
4.
5.
Neuroligins enhance synapse formation in vitro, but surprisingly are not required for the generation of synapses in vivo. We now show that in cultured neurons, neuroligin-1 overexpression increases excitatory, but not inhibitory, synaptic responses, and potentiates synaptic NMDAR/AMPAR ratios. In contrast, neuroligin-2 overexpression increases inhibitory, but not excitatory, synaptic responses. Accordingly, deletion of neuroligin-1 in knockout mice selectively decreases the NMDAR/AMPAR ratio, whereas deletion of neuroligin-2 selectively decreases inhibitory synaptic responses. Strikingly, chronic inhibition of NMDARs or CaM-Kinase II, which signals downstream of NMDARs, suppresses the synapse-boosting activity of neuroligin-1, whereas chronic inhibition of general synaptic activity suppresses the synapse-boosting activity of neuroligin-2. Taken together, these data indicate that neuroligins do not establish, but specify and validate, synapses via an activity-dependent mechanism, with different neuroligins acting on distinct types of synapses. This hypothesis reconciles the overexpression and knockout phenotypes and suggests that neuroligins contribute to the use-dependent formation of neural circuits.  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号