首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2747篇
  免费   226篇
  国内免费   1篇
  2023年   5篇
  2022年   26篇
  2021年   50篇
  2020年   29篇
  2019年   41篇
  2018年   55篇
  2017年   53篇
  2016年   82篇
  2015年   141篇
  2014年   152篇
  2013年   178篇
  2012年   241篇
  2011年   190篇
  2010年   140篇
  2009年   132篇
  2008年   175篇
  2007年   148篇
  2006年   152篇
  2005年   130篇
  2004年   130篇
  2003年   124篇
  2002年   117篇
  2001年   51篇
  2000年   41篇
  1999年   58篇
  1998年   34篇
  1997年   25篇
  1996年   34篇
  1995年   20篇
  1994年   20篇
  1993年   17篇
  1992年   21篇
  1991年   17篇
  1990年   19篇
  1989年   8篇
  1988年   8篇
  1987年   15篇
  1986年   17篇
  1985年   12篇
  1984年   9篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   9篇
  1977年   4篇
  1975年   3篇
  1974年   3篇
  1973年   4篇
排序方式: 共有2974条查询结果,搜索用时 31 毫秒
1.
Recent experimental evidence suggests that coordinated expression of ion channels plays a role in constraining neuronal electrical activity. In particular, each neuronal cell type of the crustacean stomatogastric ganglion exhibits a unique set of positive linear correlations between ionic membrane conductances. These data suggest a causal relationship between expressed conductance correlations and features of cellular identity, namely electrical activity type. To test this idea, we used an existing database of conductance-based model neurons. We partitioned this database based on various measures of intrinsic activity, to approximate distinctions between biological cell types. We then tested individual conductance pairs for linear dependence to identify correlations. Contrary to experimental evidence, in which all conductance correlations are positive, 32% of correlations seen in this database were negative relationships. In addition, 80% of correlations seen here involved at least one calcium conductance, which have been difficult to measure experimentally. Similar to experimental results, each activity type investigated had a unique combination of correlated conductances. Finally, we found that populations of models that conform to a specific conductance correlation have a higher likelihood of exhibiting a particular feature of electrical activity. We conclude that regulating conductance ratios can support proper electrical activity of a wide range of cell types, particularly when the identity of the cell is well-defined by one or two features of its activity. Furthermore, we predict that previously unseen negative correlations and correlations involving calcium conductances are biologically plausible.  相似文献   
2.
Columba livia is an important reservoir and carrier of Cryptococcus neoformans, Cryptococcus uniguttulatus, Cryptococcus laurentii and Cryptococcus albidus. Upper digestive tract of this species is also known as a habitat for Cryptococcus neoformans. Given the increasing clinical interest of this microorganism, 331 swabs from crop and 174 dropping samples from pigeon lofts in Grand Canary Island have been studied. The obtained results show an extensive presence samples 81 positive (24.47%) of Cryptococcus spp. in analysed crops: 32 (9.66%) for C. neoformans, 24 (7.2%) for C. uniguttulatus, 23 (6.9%) for C. albidus and 2 (0.6%) for C. laurentii. In the same way, Cryptococcus spp was also isolated in 82 (47.13%), dropping samples: C. neoformans in 59 (33.9%), C. uniguttulatus, in 9 (5.17%), C. laurentii in 8 (4.59%) and C. albidus in 6 (3.44%) of the investigated samples, respectively. The cryptococcosis produced by species of cryptococci other than C. neoformans has become more important during the last decade, supporting the study on the role of pigeon in the epidemiology of this disease.  相似文献   
3.
After separation of gangliosides by thin-layer chromatography, femtomolar quantities of GM1 were detected by incubating the plate with native choleratoxin, followed by anticholeratoxin and species-specific labeled antiserum. Only stable reagents were involved when antiserum labeled with horseradish peroxidase was used. Native choleratoxin rather than iodinelabeled toxin ensured good reproducibility of the method.  相似文献   
4.
Ribonuclease P: the diversity of a ubiquitous RNA processing enzyme   总被引:8,自引:0,他引:8  
Ribonuclease P is the endonuclease required for generating the mature tRNA 5'-end. The ribonucleoprotein character of this enzyme has now been proven in most organisms and organelles. Exceptions, however, are still the chloroplasts, plant nuclei and animal mitochondria where no associated RNAs have been detected to date. In contrast to the known RNA subunits, which are fairly well-conserved in size and structure among diverse phylogenetic groups, the protein contribution to the holoenzyme is highly variable in size and number of the individual components. The structure of the bacterial protein component has recently been solved. In contrast, the spatial arrangement of the multiple subunits in eukaryotic enzymes is still enigmatic. Substrate requirements of the enzymes or their catalytic RNA subunits are equally diverse, ranging from simple single domain mimics to an almost intact three-dimensional structure of the pre-tRNA substrate. As an example for an intermediate in the enzyme evolution, ribonuclease P from the Cyanophora paradoxa cyanelle will be discussed in more detail. This enzyme is unique, as it combines cyanobacterial and eukaryotic features in its function, subunit composition and holoenzyme topology.  相似文献   
5.
6.
Abstract Klebsiella pneumoniae M5a1 grows readily on two compounds, 4-hydroxyphenylacetate and 4-aminobutyrate, whose catabolism produces succinic semialdehyde. A single succinic semialdehyde dehydrogenase was detected, native molecular weight 52000, that has NAD as the preferred cofactor and is induced by succinic semialdehyde functions in the oxidation of succinic semialdehyde during growth on both 4-hydroxyphenyl-acetate and 4-aminobutyrate. This contrasts with the situation for Escherichia coli and Pseudomonas putida where two distinct forms of succinic semialdehyde dehydrogenase have been observed.  相似文献   
7.
8.
Microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase activity is enhanced about 5 fold by 2 mM of either AMP or ADP. Activation constants, Ka, for AMP and ADP are 17 microM and 430 microM respectively, showing that AMP is a more potent activator than ADP. This property is expressed by increasing not only the rate of reductase inactivation but also the rate of reductase phosphorylation from [gamma-32P]ATP. GTP can replace ATP as substrate of reductase kinase but GMP and GDP cannot replace AMP as activators. Kinetic studies show that ATP can only act as a substrate. Nucleoside mono or diphosphates and nucleoside triphosphates, thus, appear to bind to different sites on microsomal HMG-CoA reductase kinase. Nucleoside mono or diphosphates act as allosteric activators of reductase kinase. The adenosyl moiety and the unaltered phosphate ester at the 5' position are two essential features of the activator molecule. Phosphorylation of reductase either by microsomal or cytosolic AMP-activated reductase kinase produces an 80% inactivation, with a concomitant incorporation of 0.8 mol of 32P per mol of reductase (Mr 55,000). In both cases exhaustive tryptic digestion of 32P-labeled HMG-CoA reductase, which had been denatured in 2M urea, yields two major phosphopeptides, the phosphoryl group being bound to serine residues.  相似文献   
9.
10.
The nucleotide analogue 5'-p-fluorosulfonylbenzoyladenosine (FSBA) reacts irreversibly with rat liver cytosolic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase kinase, causing a rapid loss of the AMP activation capacity and a slower inactivation of the catalytic activity. The rate constant for loss of AMP activation is about 10 times higher (kappa 1 = 0.112 min-1) than the rate constant of inactivation (kappa 2 = 0.0106 min-1). There is a good correspondence between the time-dependent inactivation of reductase kinase and the time-dependent incorporation of 5'-p-sulfonylbenzoyl[14C]adenosine ([14C]SBA). An average of 1.65 mol of reagent/mol of enzyme subunit is bound when reductase kinase is completely inactivated. The time-dependent incorporation is consistent with the postulate that covalent reaction of 1 mol of SBA/mol of subunit causes complete loss of AMP activation, whereas reaction of another mole of SBA/mol of subunit would lead to total inactivation. Protection against inactivation by the reagent is provided by the addition of Mg2+, AMP, Mg-ATP, or Mg-AMP to the incubation mixtures. In contrast, addition of ATP, 2'-AMP, or 3'-AMP has no effect on the rate constants. Mg-ATP protects preferentially the catalytic site against inactivation, whereas Mg-AMP at low concentration protects preferentially the allosteric site. Mg-ADP affords less protection than Mg-AMP to the allosteric site when both nucleotides are present at a concentration of 50 microM with 7.5 mM Mg2+. Experiments done with [14C]FSBA in the presence of some protectants have shown that a close correlation exists between the pattern of protection observed and the binding of [14C]SBA. The postulate is that there exists a catalytic site and an allosteric site in the reductase kinase subunit and that Mg-AMP is the main allosteric activator of the enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号