首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   5篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   6篇
  2012年   7篇
  2011年   8篇
  2010年   2篇
  2009年   9篇
  2008年   6篇
  2007年   9篇
  2006年   8篇
  2005年   9篇
  2004年   11篇
  2003年   12篇
  2002年   9篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1985年   2篇
  1984年   1篇
排序方式: 共有128条查询结果,搜索用时 46 毫秒
1.
The pulmonary microvascular responses to leukotrienes B4, C4 and D4 (total dosage of 4 μg/kg i.v.) were examined in acutely-prepared halothane anesthetized and awake sheep prepared with lung lymp fistulas. In anesthetized as well as unanesthetized sheep, LTB4 caused a marked and transient decrease in the circulating leukocyte count. Pulmonary transvascular protein clearance (pulmonary lymph flow x lymph-to-plasma protein concentration ratio) increased transiently in awake sheep, suggesting a small increase in pulmonary vascular permeability. The mean pulmonary artery pressure (P ) also increased. In the acutely-prepared sheep, the LTB4-induced pulmonary hemodynamic and lymph flow responses were damped. Leukotriene C4 increased P to a greater extent in awake sheep than in anesthetized sheep, but did not significantly affect the pulmonary lymph flow rate (Q̇lym) and lmph-to-plasma protein concentration (L/P) ration in either group. LTD4 increased P and Q̇lymp in both acute and awake sheep; Q̇lym increased without a significant change in the L/P ratio. The LTD4-induced rise in P occurred in association with an increase in plasma thromboxane B2 (Txb2) cocentration. The relativity small increase in Q̇lym with LTD4 suggests that the increase in the transvascular fluid filtration rate is the result of a rise in the pulmonary capillary hydrostatic pressure. In conclusion, LTB4 induces a marked neutropenia, pulmonary hypertension, and may transiently increase lung vascular permeability. Both LTC4 and LTD4 cause a similar degree of pulmonary hypertension in awake sheep, but had different lymph flow responses which may be due to pulmonary vasoconstriction at different sites, i.e. greather pre-capillary constriction with LTC4 because Q̇lym did not change and greater post-capillary constriction with LTD4 because Q̇ increased with the same rise in P .  相似文献   
2.
Cellular mechanisms responsible for the termination of ET-1 signal are poorly understood. In order to examine the hypothesis that nitric oxide serves as a physiological brake of ET- 1 signaling, Chinese hamster ovary (CHO) cells stably transfected with the ETA receptor cDNA (CHO-ET) were studied. CHO-ET responded to ET-1 with robust [Ca2+], transients and developed a long-lasting homologous desensitization. Donors of nitric oxide (NO), 3-morpholino-sydnonimine HCl(SIN-1), or sodium nitroprusside (SNP) reduced the amplitude of these responses, accelerated the rate of [Ca2+], recovery, and counteracted the development of homologous desensitization by a cyclic GMP-independent mechanism, suggesting an alternative mode for NO modulation of ET-1 responses. Stimulation of CHO-ET cells with mastoparan, a wasp venom acting directly on G proteins (bypassing receptor activation), was inhibited by NO, revealing a postreceptoral target for NO-induced modulation of [Ca2+] mobilization. Using a lys9-biotinylated ET-1 (ET-1 [BtK9]), binding sites were “mapped” in CHO-ET cells. Receptor-ligand complexes did not exhibit spontaneous dissociation during 60min observations. Quantitative fluorescence microscopy revealed that SNP or SIN-1 caused a rapid, concentration-dependent, and reversible dissociation of biotinylated ET- 1 from ETA receptor (EC50 = 75 μM and 6 μM, respectively), an effect that was not mimicked by 8-bromo-cyclic GMP. “Sandwich” co-culture of endothelial cells with CHO-ET showed that activation of NO production by endothelial cells similarly resulted in dissociation of ET-1 [BtK9] from ETA receptors. We hypothesize that NO plays a role in physiological termination of ET-1 signalling by dual mechanisms: (1) displacement of bound ET-1 from its receptor, thus preventing homologous desensitization, and (2) interference with the postreceptoral pathway for [Ca2+] mobilization, hence inhibiting end-responses to ET-1. © 1994 Wiley-Liss, Inc.  相似文献   
3.
BackgroundSusumu Ohno’s idea that modern vertebrates are degenerate polyploids (concept referred as 2R hypothesis) has been the subject of intense debate for past four decades. It was proposed that intra-genomic synteny regions (paralogons) in human genome are remains of ancient polyploidization events that occurred early in the vertebrate history. The quadruplicated paralogon centered on human HOX clusters is taken as evidence that human HOX-bearing chromosomes were structured by two rounds of whole genome duplication (WGD) events.ResultsEvolutionary history of human HOX-bearing chromosomes (chromosomes 2/7/12/17) was evaluated by the phylogenetic analysis of multigene families with triplicated or quadruplicated distribution on these chromosomes. Topology comparison approach categorized the members of 44 families into four distinct co-duplicated groups. Distinct gene families belonging to a particular co-duplicated group, exhibit similar evolutionary history and hence have duplicated simultaneously, whereas genes of two distinct co-duplicated groups do not share their evolutionary history and have not duplicated in concert with each other.ConclusionThe recovery of co-duplicated groups suggests that “ancient segmental duplications and rearrangements” is the most rational model of evolutionary events that have generated the triplicated and quadruplicated paralogy regions seen on the human HOX-bearing chromosomes.  相似文献   
4.
5.
We determined the concentration dependence of albumin binding, uptake, and transport in confluent monolayers of cultured rat lung microvascular endothelial cells (RLMVEC). Transport of (125)I-albumin in RLMVEC monolayers occurred at a rate of 7.2 fmol. min(-1). 10(6) cells(-1). Albumin transport was inhibited by cell surface depletion of the 60-kDa albumin-binding glycoprotein gp60 and by disruption of caveolae using methyl-beta-cyclodextrin. By contrast, gp60 activation (by means of gp60 cross-linking using primary and secondary antibodies) increased (125)I-albumin uptake 2.3-fold. At 37 degrees C, (125)I-albumin uptake had a half time of 10 min and was competitively inhibited by unlabeled albumin (IC(50) = 1 microM). Using a two-site model, we estimated by Scatchard analysis the affinity (K(D)) and maximal capacity (B(max)) of albumin uptake to be 0.87 microM (K(D1)) and 0.47 pmol/10(6) cells (B(max1)) and 93.3 microM (K(D2)) and 20.2 pmol/10(6) cells (B(max2)). At 4 degrees C, we also observed two populations of specific binding sites, with high (K(D1) = 13.5 nM, 1% of the total) and low (K(D2) = 1.6 microM) affinity. On the basis of these data, we propose a model in which the two binding affinities represent the clustered and unclustered gp60 forms. The model predicts that fluid phase albumin in caveolae accounts for the bulk of albumin internalized and transported in the endothelial monolayer.  相似文献   
6.
We tested the hypothesis that RhoA, a monomeric GTP-binding protein, induces association of inositol trisphosphate receptor (IP3R) with transient receptor potential channel (TRPC1), and thereby activates store depletion-induced Ca2+ entry in endothelial cells. We showed that RhoA upon activation with thrombin associated with both IP3R and TRPC1. Thrombin also induced translocation of a complex consisting of Rho, IP3R, and TRPC1 to the plasma membrane. IP3R and TRPC1 translocation and association required Rho activation because the response was not seen in C3 transferase (C3)-treated cells. Rho function inhibition using Rho dominant-negative mutant or C3 dampened Ca2+ entry regardless of whether Ca2+ stores were emptied by thrombin, thapsigargin, or inositol trisphosphate. Rho-induced association of IP3R with TRPC1 was dependent on actin filament polymerization because latrunculin (which inhibits actin polymerization) prevented both the association and Ca2+ entry. We also showed that thrombin produced a sustained Rho-dependent increase in cytosolic Ca2+ concentration [Ca2+]i in endothelial cells overexpressing TRPC1. We further showed that Rho-activated Ca2+ entry via TRPC1 is important in the mechanism of the thrombin-induced increase in endothelial permeability. In summary, Rho activation signals interaction of IP3R with TRPC1 at the plasma membrane of endothelial cells, and triggers Ca2+ entry following store depletion and the resultant increase in endothelial permeability.  相似文献   
7.
Endothelial barrier function is regulated in part by the transcellular transport of albumin and other macromolecules via endothelial caveolae (i.e., this process is defined as transcytosis). Using pulmonary microvascular endothelial cells, we have identified the specific interactions between a cell surface albumin-docking protein gp60 and caveolin-1 as well as components of the signaling machinery, heterotrimeric G protein (G(i))- and Src-family tyrosine kinase. Ligation of gp60 on the apical membrane induces the release of caveolae from the apical membrane and activation of endocytosis. The formed vesicles contain the gp60-bound albumin and also albumin and other solutes present in the fluid phase. Vesicles are transported in a polarized manner to the basolateral membrane, releasing their contents by exocytosis into the subendothelial space. The signaling functions of G(i) and Src are important in the release of caveolae from the plasma membrane. The Src-induced phosphorylation of caveolin-1 is crucial in regulating interactions of caveolin-1 with other components of the signaling machinery such as G(i), and key signaling entry of caveolae into the cytoplasm and endocytosis of albumin and other solutes. This review addresses the basis of transcytosis in endothelial cells, its central role as a determinant of endothelial barrier function, and signaling mechanisms involved in regulating fission of caveolae and trafficking of the formed vesicles from the luminal to abluminal side of the endothelial barrier.  相似文献   
8.
Burkholderia sp. accumulates polyhydroxyalkanoates (PHAs) containing 3-hydroxybutyrate and 3-hydroxy-4-pentenoic acid when grown on mineral media under limited phosphate or nitrogen, and using sucrose or gluconate as a carbon and energy source. Solvent fractionation and NMR spectroscopic characterization of these polyesters revealed the simultaneous accumulation of two homopolyesters rather than a co-polyester with random sequence distribution of the monomers [Valentin HE, Berger PA, Gruys KJ, Rodrigues MFA, Steinbüchel A, Tran M, Asrar J (1999) Macromolecules 32: 7389–7395]. To understand the genetic requirements for such unusual polyester accumulation, we probed total genomic DNA from Burkholderia sp. by Southern hybridization experiments using phaC-specific probes. These experiments indicated the presence of more than one PHA synthase gene within the genome of Burkholderia sp. However, when total genomic DNA from Burkholderia sp. was used to complement a PHA-negative mutant of Ralstonia eutropha for PHA accumulation, only one PHA synthase gene was obtained resembling the R. eutropha type of PHA synthases, based on amino acid sequence similarity. In addition to the PHA synthase gene, based on high sequence homology, genes encoding a β-ketothiolase and acetoacetyl-CoA reductase were identified in a gene cluster with the PHA synthase gene. The arrangement of the three genes is quite similar to the R. eutropha poly-β-hydroxybutyrate biosynthesis operon. Received: 3 September 1999 / Received revision: 29 October 1999 / Accepted: 5 November 1999  相似文献   
9.
Endothelial cell (EC) migration, cell-cell adhesion, and the formation of branching point structures are considered hallmarks of angiogenesis; however, the underlying mechanisms of these processes are not well understood. Lipid phosphate phosphatase 3 (LPP3) is a recently described p120-catenin-associated integrin ligand localized in adherens junctions (AJs) of ECs. Here, we tested the hypothesis that LPP3 stimulates β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) to induce EC migration and formation of branching point structures. In subconfluent ECs, LPP3 induced expression of fibronectin via β-catenin/LEF-1 signaling in a phosphatase and tensin homologue (PTEN)-dependent manner. In confluent ECs, depletion of p120-catenin restored LPP3-mediated β-catenin/LEF-1 signaling. Depletion of LPP3 resulted in destabilization of β-catenin, which in turn reduced fibronectin synthesis and deposition, which resulted in inhibition of EC migration. Accordingly, reexpression of β-catenin but not p120-catenin in LPP3-depleted ECs restored de novo synthesis of fibronectin, which mediated EC migration and formation of branching point structures. In confluent ECs, however, a fraction of p120-catenin associated and colocalized with LPP3 at the plasma membrane, via the C-terminal cytoplasmic domain, thereby limiting the ability of LPP3 to stimulate β-catenin/LEF-1 signaling. Thus, our study identified a key role for LPP3 in orchestrating PTEN-mediated β-catenin/LEF-1 signaling in EC migration, cell-cell adhesion, and formation of branching point structures.Angiogenesis, the formation of new blood vessels, involves several well-coordinated cellular processes, including endothelial cell (EC) migration, synthesis and deposition of extracellular matrix proteins, such as fibronectin, cell-cell adhesion, and formation of branching point structures (1-3, 19, 33); however, less is known about the underlying mechanisms of these processes (6, 8, 12, 14, 16, 17). For example, adherens junctions (AJs), which mediate cell-cell adhesion between ECs, may be involved in limiting the extent of cell migration (2, 14, 38, 40). VE-cadherin, a protein found in AJs, is a single-pass transmembrane polypeptide responsible for calcium-dependent homophilic interactions through its extracellular domains (2, 38, 40). The VE-cadherin cytoplasmic domain interacts with the Armadillo domain-containing proteins, β-catenin, γ-catenin (plakoglobin), and p120-catenin (p120ctn) (2, 15, 38, 40, 43). Genetic and biochemical evidence documents a crucial role of β-catenin in regulating cell adhesion as well as proliferation secondary to the central position of β-catenin in the Wnt signaling pathway (13, 16, 25, 31, 44). In addition, the juxtamembrane protein p120ctn regulates AJ stability via binding to VE-cadherin (2, 7, 9, 15, 21, 28, 32, 43). The absence of regulation or inappropriate regulation of β-catenin and VE-cadherin functions is linked to cardiovascular disease and tumor progression (2, 6).We previously identified lipid phosphate phosphatase 3 (LPP3), also known as phosphatidic acid phosphatase 2b (PAP2b), in a functional assay of angiogenesis (18, 19, 41, 42). LPP3 not only exhibits lipid phosphatase activity but also functions as a cell-associated integrin ligand (18, 19, 35, 41, 42). The known LPPs (LPP1, LPP2, and LPP3) (20-23) are six transmembrane domain-containing plasma membrane-bound enzymes that dephosphorylate sphingosine-1-phosphate (S1P) and its structural homologues, and thus, these phosphatases generate lipid mediators (4, 5, 23, 35, 39). All LPPs, which contain a single N-glycosylation site and a putative lipid phosphatase motif, are situated such that their N and C termini are within the cell (4, 5, 22, 23, 35, 39). Only the LPP3 isoform contains an Arg-Gly-Asp (RGD) sequence in the second extracellular loop, and this RGD sequence enables LPP3 to bind integrins (18, 19, 22). Transfection experiments with green fluorescent protein (GFP)-tagged LPP1 and LPP3 showed that LPP1 is apically sorted, whereas LPP3 colocalized with E-cadherin at cell-cell contact sites with other Madin-Darby canine kidney (MDCK) cells (22). Mutagenesis and domain swapping experiments established that LPP1 contains an apical targeting signal sequence (FDKTRL) in its N-terminal segment. In contrast, LPP3 contains a dityrosine (109Y/110Y) basolateral sorting motif (22). Interestingly, conventional deletion of Lpp3 is embryonic lethal, since the Lpp3 gene plays a critical role in extraembryonic vasculogenesis independent of its lipid phosphatase activity (11). In addition, an LPP3-neutralizing antibody was shown to prevent cell-cell interactions (19, 42) and angiogenesis (42). Here, we addressed the hypothesis that LPP3 plays a key role in EC migration, cell-cell adhesion, and formation of branching point structures by stimulating β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) signaling.  相似文献   
10.
We identified the GDI-1-regulated mechanism of RhoA activation from the Rho-GDI-1 complex and its role in mediating increased endothelial permeability. Thrombin stimulation failed to induce RhoA activation and actin stress fiber formation in human pulmonary arterial endothelial cells transduced with full-length GDI-1. Expression of a GDI-1 mutant form (C-GDI) containing the C terminus (aa 69 to 204) also prevented RhoA activation, whereas further deletions failed to alter RhoA activation. We observed that protein kinase Calpha-mediated phosphorylation of the C terminus of GDI-1 at Ser96 reduced the affinity of GDI-1 for RhoA and thereby enabled RhoA activation. Rendering GDI-1 phosphodefective with a Ser96 --> Ala substitution rescued the inhibitory activity of GDI-1 toward RhoA but did not alter the thrombin-induced activation of other Rho GTPases, i.e., Rac1 and Cdc42. Phosphodefective mutant GDI-1 also suppressed myosin light chain phosphorylation, actin stress fiber formation, and the increased endothelial permeability induced by thrombin. In contrast, expressing the phospho-mimicking mutant S96D-GDI-1 protein induced RhoA activity and increased endothelial permeability independently of thrombin stimulation. These results demonstrate the crucial role of the phosphorylation of the C terminus of GDI-1 at S96 in selectively activating RhoA. Inhibiting GDI-1 phosphorylation at S96 is a potential therapeutic target for modulating RhoA activity and thus preventing the increase in endothelial permeability associated with vascular inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号