首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2011年   1篇
  2007年   1篇
排序方式: 共有7条查询结果,搜索用时 443 毫秒
1
1.

Background

Q fever is a zoonosis caused by Coxiella burnetii, a Gram negative bacterium present worldwide. Small ruminants are considered the main reservoirs for infection of humans. This study aimed to estimate the extent of C. burnetii infection among sheep and goats in part of The Gambia.

Methodology/Principal Findings

This survey was carried out from March to May 2012 at two areas in The Gambia. The first area comprised a cluster of seven rural villages situated 5–15 km west of Farafenni as well as the local abattoir. A second sampling was done at the central abattoir in Abuko (30 km from the capital, Banjul) in the Western Region. Serum samples were obtained from 490 goats and 398 sheep. In addition, 67 milk samples were obtained from lactating dams. Sera were tested with a Q fever ELISA kit. C. burnetii DNA was extracted from milk samples and then detected using a specific quantitative multiplex PCR assay, targeting the IS1111a element. A multivariable mixed logistic regression model was used to examine the relationship between seropositivity and explanatory variables. An overall seroprevalence of 21.6% was found. Goats had a significantly higher seroprevalence than sheep, respectively 24.2% and 18.5%. Seropositive animals were significantly older than seronegative animals. Animals from the villages had a significantly lower seroprevalence than animals from the central abattoir (15.1% versus 29.1%). C. burnetii DNA was detected in 2 out of 67 milk samples, whereas 8 samples gave a doubtful result.

Conclusion/Significance

A substantial C. burnetii seroprevalence in sheep and goats in The Gambia was demonstrated. People living in close proximity to small ruminants are exposed to C. burnetii. Q fever should be considered as a possible cause of acute febrile illness in humans in The Gambia. Future studies should include a simultaneous assessment of veterinary and human serology, and include aetiology of febrile illness in local clinics.  相似文献   
2.
3.

Background

The prevalence of Helicobacter pylori including strains with putatively virulent genotypes is high, whereas the H. pylori-associated disease burden is low, in Africa compared to developed countries. In this study, we investigated the prevalence of virulence-related H. pylori genotypes and their association with gastroduodenal diseases in The Gambia.

Methods and Findings

DNA extracted from biopsies and H. pylori cultures from 169 subjects with abdominal pain, dyspepsia or other gastroduodenal diseases were tested by PCR for H. pylori. The H. pylori positive samples were further tested for the cagA oncogene and vacA toxin gene.One hundred and twenty one subjects (71.6%) were H. pylori positive. The cagA gene and more toxigenic s1 and m1 alleles of the vacA gene were found in 61.2%, 76.9% and 45.5% respectively of Gambian patients harbouring H. pylori. There was a high prevalence of cagA positive strains in patients with overt gastric diseases than those with non-ulcerative dyspepsia (NUD) (p = 0.05); however, mixed infection by cagA positive and cagA negative strains was more common in patients with NUD compared to patients with gastric disease (24.5% versus 0%; p = 0.002).

Conclusion

This study shows that the prevalence of H. pylori is high in dyspeptic patients in The Gambia and that many strains are of the putatively more virulent cagA+, vacAs1 and vacAm1 genotypes. This study has also shown significantly lower disease burden in Gambians infected with a mixture of cag-positive and cag-negative strains, relative to those containing only cag-positive or only cag-negative strains, which suggests that harbouring both cag-positive and cag-negative strains is protective.  相似文献   
4.
The gastric pathogen Helicobacter pylori is one of the most genetically diverse of bacterial species. Much of its diversity stems from frequent mutation and recombination, preferential transmission within families and local communities, and selection during persistent gastric mucosal infection. MLST of seven housekeeping genes had identified multiple distinct H. pylori populations, including three from Africa: hpNEAfrica, hpAfrica1 and hpAfrica2, which consists of three subpopulations (hspWAfrica, hspCAfrica and hspSAfrica). Most detailed H. pylori population analyses have used strains from non-African countries, despite Africa''s high importance in the emergence and evolution of humans and their pathogens. Our concatenated sequences from seven H. pylori housekeeping genes from 44 Gambian patients (MLST) identified 42 distinct sequence types (or haplotypes), and no clustering with age or disease. STRUCTURE analysis of the sequence data indicated that Gambian H. pylori strains belong to the hspWAfrica subpopulation of hpAfrica1, in accord with Gambia''s West African location. Despite Gambia''s history of invasion and colonisation by Europeans and North Africans during the last millennium, no traces of Ancestral Europe1 (AE1) population carried by those people were found. Instead, admixture of 17% from Ancestral Europe2 (AE2) was detected in Gambian strains; this population predominates in Nilo-Saharan speakers of North-East Africa, and might have been derived from admixture of hpNEAfrica strains these people carried when they migrated across the Sahara during the Holocene humid period 6,000–9,000 years ago. Alternatively, shared AE2 ancestry might have resulted from shared ancestral polymorphisms already present in the common ancestor of sister populations hpAfrica1 and hpNEAfrica.  相似文献   
5.
BackgroundPhylogenetically distinct Mycobacterium tuberculosis lineages differ in their phenotypes and pathogenicity. Consequently, understanding mycobacterial population structures phylogeographically is essential for design, interpretation and generalizability of clinical trials. Comprehensive efforts are lacking to date to establish the West African mycobacterial population structure on a sub-continental scale, which has diagnostic implications and can inform the design of clinical TB trials.Conclusions/SignificanceBecause of the geographical divide of the mycobacterial populations in West Africa, individual research findings from one country cannot be generalized across the whole region. The unequal geographical family distribution should be considered in placement and design of future clinical trials in West Africa.  相似文献   
6.
BackgroundBrucellosis is a worldwide zoonosis with significant impact on rural livelihoods and a potentially underestimated contributor to febrile illnesses. The aim of this study was to estimate the seroprevalence of brucellosis in humans and small ruminants in The Gambia.MethodsThe study was carried out in rural and urban areas. In 12 rural villages in Kiang West district, sera were collected from humans (n = 599) and small ruminants (n = 623) from the same compounds. From lactating small ruminants, milk samples and vaginal swabs were obtained. At the urban study sites, sera were collected from small ruminants (n = 500) from slaughterhouses and livestock markets. Information on possible risk factors for seropositivity was collected through questionnaires. Sera were screened for antibodies against Brucella spp. with the Rose Bengal Test, ELISA and Micro Agglutination Test (human sera only). PCR was performed on 10 percent of the milk samples and vaginal swabs from small ruminants.ResultsOne human and 14 sheep sera were positive by the Rose Bengal Test. The rest were negative in all serological tests used. The PCR results were all negative.ConclusionsThe results suggest that brucellosis is currently not a generalized problem in humans or small ruminants in The Gambia.  相似文献   
7.
Geographic partitioning is postulated to foster divergence of Helicobacter pylori populations as an adaptive response to local differences in predominant host physiology. H. pylori's ability to establish persistent infection despite host inflammatory responses likely involves active management of host defenses using bacterial proteins that may themselves be targets for adaptive evolution. Sequenced H. pylori genomes encode a family of eight or nine secreted proteins containing repeat motifs that are characteristic of the eukaryotic Sel1 regulatory protein, whereas the related Campylobacter and Wolinella genomes each contain only one or two such “Sel1-like repeat” (SLR) genes (“slr genes”). Signatures of positive selection (ratio of nonsynonymous to synonymous mutations, dN/dS = ω > 1) were evident in the evolutionary history of H. pylori slr gene family expansion. Sequence analysis of six of these slr genes (hp0160, hp0211, hp0235, hp0519, hp0628, and hp1117) from representative East Asian, European, and African H. pylori strains revealed that all but hp0628 had undergone positive selection, with different amino acids often selected in different regions. Most striking was a divergence of Japanese and Korean alleles of hp0519, with Japanese alleles having undergone particularly strong positive selection (ωJ > 25), whereas alleles of other genes from these populations were intermingled. Homology-based structural modeling localized most residues under positive selection to SLR protein surfaces. Rapid evolution of certain slr genes in specific H. pylori lineages suggests a model of adaptive change driven by selection for fine-tuning of host responses, and facilitated by geographic isolation. Characterization of such local adaptations should help elucidate how H. pylori manages persistent infection, and potentially lead to interventions tailored to diverse human populations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号