首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   582篇
  免费   34篇
  国内免费   4篇
  2023年   5篇
  2022年   11篇
  2021年   13篇
  2020年   8篇
  2019年   19篇
  2018年   16篇
  2017年   13篇
  2016年   30篇
  2015年   41篇
  2014年   38篇
  2013年   36篇
  2012年   53篇
  2011年   49篇
  2010年   35篇
  2009年   17篇
  2008年   46篇
  2007年   34篇
  2006年   35篇
  2005年   24篇
  2004年   17篇
  2003年   12篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   3篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1966年   1篇
排序方式: 共有620条查询结果,搜索用时 17 毫秒
1.
Computer-aided antibody engineering has been successful in the design of new biologics for disease diagnosis and therapeutic interventions. Interleukin-6 (IL-6), a well-recognized drug target for various autoimmune and inflammatory diseases such as rheumatoid arthritis, multiple sclerosis, and psoriasis, was investigated in silico to design potential lead antibodies. Here, crystal structure of IL-6 along with monoclonal antibody olokizumab was explored to predict antigen–antibody (Ag???Ab)-interacting residues using DiscoTope, Paratome, and PyMOL. Tyr56, Tyr103 in heavy chain and Gly30, Ile31 in light chain of olokizumab were mutated with residues Ser, Thr, Tyr, Trp, and Phe. A set of 899 mutant macromolecules were designed, and binding affinity of these macromolecules to IL-6 was evaluated through Ag???Ab docking (ZDOCK, ClusPro, and Rosetta server), binding free-energy calculations using Molecular Mechanics/Poisson Boltzman Surface Area (MM/PBSA) method, and interaction energy estimation. In comparison to olokizumab, eight newly designed theoretical antibodies demonstrated better result in all assessments. Therefore, these newly designed macromolecules were proposed as potential lead antibodies to serve as a therapeutics option for IL-6-mediated diseases.  相似文献   
2.
Oxygen-derived free radicals and hemolysis during open heart surgery   总被引:2,自引:0,他引:2  
Reperfusion injury occurs during open-heart surgery after prolonged cardioplegic arrest. Cardiopulmonary bypass also is known to cause hemolysis. Since reperfusion of ischemic myocardium is associated with the generation of oxygen free radicals, and since free radicals can attack a protein molecule, it seems reasonable to assume that hemolysis might be the consequence of free radical attack on hemoglobin protein. The results of this study demonstrated that reperfusion following ischemic arrest caused an increase in free hemoglobin and free heme concentrations, simultaneously releasing free iron and generating hydroxyl radicals. In vitro studies using pure hemoglobin indicated that superoxide anion generated by the action of xanthine oxidase on xanthine could release iron from the heme ring and cause deoxygenation of oxyhemoglobin into ferrihemoglobin. This study further demonstrated that before the release of iron from the heme nucleus, oxyhemoglobin underwent deoxygenation to ferrihemoglobin. The released iron can catalyze the Fenton reaction, leading to the formation of cytotoxic hydroxyl radical (OH·). In fact, the formation of OH. in conjunction with hemolysis occurs during cardiac surgery, and when viewed in the light of the in vitro results, it seems likely that oxygen-derived free radicals may cause hemolysis during cardiopulmonary bypass and simultaneously release iron from the heme ring, which can catalyze the formation of OH·.  相似文献   
3.
We develop a new method for variable selection in a nonlinear additive function-on-scalar regression (FOSR) model. Existing methods for variable selection in FOSR have focused on the linear effects of scalar predictors, which can be a restrictive assumption in the presence of multiple continuously measured covariates. We propose a computationally efficient approach for variable selection in existing linear FOSR using functional principal component scores of the functional response and extend this framework to a nonlinear additive function-on-scalar model. The proposed method provides a unified and flexible framework for variable selection in FOSR, allowing nonlinear effects of the covariates. Numerical analysis using simulation study illustrates the advantages of the proposed method over existing variable selection methods in FOSR even when the underlying covariate effects are all linear. The proposed procedure is demonstrated on accelerometer data from the 2003–2004 cohorts of the National Health and Nutrition Examination Survey (NHANES) in understanding the association between diurnal patterns of physical activity and demographic, lifestyle, and health characteristics of the participants.  相似文献   
4.
5.
6.
D K Das  J Iyengar  R M Jones  D Lu  S Maity 《Cryobiology》1991,28(2):177-184
A recent study from our laboratory indicated additional tissue injury during rewarming of a cooled rabbit leg. Oxygen-derived free radicals were believed to play a role in such "rewarming injury." Since free radicals may attack membrane phospholipids, we analyzed the phospholipid composition in the leg tissue during cooling and rewarming. Our results indicated significant breakdown of membrane phospholipids, particularly phosphatidylcholine and phosphatidylethanolamine, with a corresponding accumulation of lysophosphatidylcholine and nonesterified fatty acids. Quinacrine, a phospholipase inhibitor, was able to preserve membrane phospholipids during rewarming of the cooled leg. Rewarming of cooled tissue was also accompanied by additional tissue injury, as evidenced by the increased release of lactic acid dehydrogenase and creatine kinase, as well as enhanced lipid peroxidation, as evidenced by increased malonaldehyde formation. Quinacrine reduced the release of these intracellular enzymes and decreased lipid peroxidation, suggesting its efficacy as a therapeutic agent against hypothermic injury.  相似文献   
7.
Effect of high doses of cobra venom (150 micrograms/120 +/- 20 g body weight) and viper venom (300 micrograms/120 +/- 20 g body weight) on total lipid, triglyceride, phospholipid, cholesterol, high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C) of brain of albino rats was studied. Total lipid (TL) triglyceride (TG) and phospholipid (PL) are decreased in both viper and cobra venom treated groups while cholesterol (C), and LDL-C are increased in both the groups in relation to controlled ones. HDL-C content was almost unaltered. Decrease in triglyceride and phospholipid may be due to effect of lipases and phospholipases whereas increased cholesterol and LDL-C may be attributed to lysis of cell membrane.  相似文献   
8.
myo-Inositol hexaphosphate adenosine diphosphate phosphotransferase transfers phosphate from myo-inositol hexaphosphate to adenosine diphosphate to synthesize adenosine triphosphate. This enzyme has been isolated and purified from ungerminated mungbean seeds and found to be different from guanosine diphosphate phosphotransferase. A purification of about 200-fold with 15% recovery has been obtained. The optimal pH of the reaction is 7.0 and is dependent on the presence of a divalent cation, i.e., Mg2+ and Mn2+. The Km value for myo-inositol hexaphosphate has been found to be 0.41 × 10?4m and V is 90.0 nmol of Pi transferred per milligram of protein per 20 min. Km for ADP is 0.88 × 10-4m and V is 83.3 nmol of phosphorus transferred to ADP per milligram of protein per 20 min. The ADP phosphotransferase reaction is reversible to the extent of about 50% of the forward reaction. dADP is partly effective as an acceptor but other ribonucleoside mono- and diphosphates cannot substitute for ADP. The products ATP and myo-inositol pentaphosphate have been confirmed by several criteria. It has also been shown that this enzyme transfers phosphate only from a specific phosphoryl group (C-2 position) of myo-inositol hexaphosphate for the synthesis of ATP and 1,3,4,5,6-myo-inositol pentaphosphate or pentakis (dihydrogen phosphate).  相似文献   
9.
Although the insertion of heme into proteins enables their function in bioenergetics, metabolism, and signaling, the mechanisms and regulation of this process are not fully understood. We developed a means to study cellular heme insertion into apo-protein targets over a 3-h period and then investigated how nitric oxide (NO) released from a chemical donor (NOC-18) might influence heme (protoporphyrin IX) insertion into seven targets that present a range of protein structures, heme ligation states, and functions (three NO synthases, two cytochrome P450's, catalase, and hemoglobin). NO blocked cellular heme insertion into all seven apo-protein targets. The inhibition occurred at relatively low (nM/min) fluxes of NO, was reversible, and did not involve changes in intracellular heme levels, activation of guanylate cyclase, or inhibition of mitochondrial ATP production. These aspects and the range of protein targets suggest that NO can act as a global inhibitor of heme insertion, possibly by inhibiting a common step in the process.  相似文献   
10.
The synthesis is described of a luminescent furophenanthraquinone derivative, 9‐methoxyphenanthro[4,3‐b]furan‐4,5‐dione (MPFD). The biological importance of tetracyclic furophenanthraquinones was considered and the tunable luminescence of MPFD in different solvents was studied to explore the nature of the specific interactions between MPFD and solvents. Observation of dual emission bands and identical nature of the fluorescence excitation spectra of MPFD monitored at the emission wavelength in polar solvents indicated the formation of two different types of species in the excited state, probably due to proton transfer from the solvent to MPFD. Luminescence intensity due to anionic species was found to be increased and the corresponding peak was red shifted with increase in the proton‐donating ability of the solvents, acting as an acid with respect to MPFD. Availability of more acidic protons in the solvent facilitated this phenomenon occurring in the excited state. MPFD also interacted with halogen‐containing solvents by forming electron donor–acceptor charge transfer (CT) complexes. This CT complex formation was dependent on the number of chlorine atoms; the position of the corresponding luminescence band varied with the polarity of the solvent. Extent of the CT increased with increase in the number of chlorine atoms in the dichloro, trichloro and tetrachloro solvents, whereas the luminescence peak due to the CT complex was found to be blue shifted with decrease in solvent polarity. Interaction of the synthesized bioactive MPFD with different solvents deserves biological importance as proton transfer and CT play pivotal roles in biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号