首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2021年   1篇
  2015年   2篇
  2014年   3篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2002年   1篇
  2000年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Genetic variation contributes to individual differences in obesity, but defining the exact relationships between naturally occurring genotypes and their effects on fatness remains elusive. As a step toward positional cloning of previously identified body composition quantitative trait loci (QTLs) from F2 crosses of mice from the C57BL/6ByJ and 129P3/J inbred strains, we sought to recapture them on a homogenous genetic background of consomic (chromosome substitution) strains. Male and female mice from reciprocal consomic strains originating from the C57BL/6ByJ and 129P3/J strains were bred and measured for body weight, length, and adiposity. Chromosomes 2, 7, and 9 were selected for substitution because previous F2 intercross studies revealed body composition QTLs on these chromosomes. We considered a QTL confirmed if one or both sexes of one or both reciprocal consomic strains differed significantly from the host strain in the expected direction after correction for multiple testing. Using these criteria, we confirmed two of two QTLs for body weight (Bwq5-6), three of three QTLs for body length (Bdln3-5), and three of three QTLs for adiposity (Adip20, Adip26 and Adip27). Overall, this study shows that despite the biological complexity of body size and composition, most QTLs for these traits are preserved when transferred to consomic strains; in addition, studying reciprocal consomic strains of both sexes is useful in assessing the robustness of a particular QTL.  相似文献   
2.
3.
Spatially resolved measurements of exocytosis in pancreatic beta-cells were made using amperometry with 1-microm radius electrodes. These measurements revealed that certain portions of a cell actively undergo exocytosis following stimulation with depolarizing agents, but other regions are inactive. The amperometric measurements were compared to measurements made with the membrane indicator dye, FM1-43, which showed uneven increases in fluorescence around the surface of the cell, with amperometric secretion being detected only at the brightest regions. In some instances, a large number of exocytotic events were detected from one electrode position. The number of events was larger than what would be expected based on the number of vesicles that could fit under an electrode of the dimensions used. These results suggest a mechanism of vesicle traffic that allows multiple fusions at a small membrane area.  相似文献   
4.
A method for high-throughput cloning and analysis of short hairpin RNAs (shRNAs) is described. Using this approach, 464 shRNAs against 116 different genes were screened for knockdown efficacy, enabling rapid identification of effective shRNAs against 74 genes. Statistical analysis of the effects of various criteria on the activity of the shRNAs confirmed that some of the rules thought to govern small interfering RNA (siRNA) activity also apply to shRNAs. These include moderate GC content, absence of internal hairpins, and asymmetric thermal stability. However, the authors did not find strong support for position specific rules. In addition, analysis of the data suggests that not all genes are equally susceptible to RNA interference (RNAi).  相似文献   
5.
American foulbrood (AFB) is one of the severe infectious diseases of European honeybees (Apis mellifera L.) and other Apis species. This disease is caused by a gram-positive, spore-forming bacterium Paenibacillus larvae. In this paper, a compartmental (SI framework) model is constructed to represent the spread of AFB within a colony. The model is analyzed to determine the long-term fate of the colony once exposed to AFB spores. It was found out that without effective and efficient treatment, AFB infection eventually leads to colony collapse. Furthermore, infection thresholds were predicted based on the stability of the equilibrium states. The number of infected cell combs is one of the factors that drive disease spread. Our results can be used to forecast the transmission timeline of AFB infection and to evaluate the control strategies for minimizing a possible epidemic.  相似文献   
6.
7.
Lipoprotein cholesterol taken up by cells is processed in the endosomal/lysosomal (E/L) compartment by the sequential action of lysosomal acid lipase (LAL), Niemann-Pick C2 (NPC2), and Niemann-Pick C1 (NPC1). Inactivation of NPC2 in mouse caused sequestration of unesterified cholesterol (UC) and expanded the whole animal sterol pool from 2,305 to 4,337 mg/kg. However, this pool increased to 5,408 and 9,480 mg/kg, respectively, when NPC1 or LAL function was absent. The transport defect in mutants lacking NPC2 or NPC1, but not in those lacking LAL, was reversed by cyclodextrin (CD), and the ED50 values for this reversal varied from ∼40 mg/kg in kidney to >20,000 mg/kg in brain in both groups. This reversal occurred only with a CD that could interact with UC. Further, a CD that could interact with, but not solubilize, UC still overcame the transport defect. These studies showed that processing and export of sterol from the late E/L compartment was quantitatively different in mice lacking LAL, NPC2, or NPC1 function. In both npc2−/− and npc1−/− mice, the transport defect was reversed by a CD that interacted with UC, likely at the membrane/bulk-water interface, allowing sterol to move rapidly to the export site of the E/L compartment.  相似文献   
8.
Niemann–Pick Type C (NPC) disease is caused by a deficiency of either NPC1 or NPC2. Loss of function of either protein results in the progressive accumulation of unesterified cholesterol in every tissue leading to cell death and organ damage. Most literature on NPC disease focuses on neurological and liver manifestations. Pulmonary dysfunction is less well described. The present studies investigated how Npc1 deficiency impacts the absolute weight, lipid composition and histology of the lungs of Npc1−/− mice (Npc1nih) at different stages of the disease, and also quantitated changes in the rates of cholesterol and fatty acid synthesis in the lung over this same time span (8 to 70 days of age). Similar measurements were made in Npc2−/− mice at 70 days. All mice were of the BALB/c strain and were fed a basal rodent chow diet. Well before weaning, the lung weight, cholesterol and phospholipid (PL) content, and cholesterol synthesis rate were all elevated in the Npc1−/− mice and remained so at 70 days of age. In contrast, lung triacylglycerol content was reduced while there was no change in lung fatty acid synthesis. Despite the elevated PL content, the composition of PL in the lungs of the Npc1−/− mice was unchanged. H&E staining revealed an age-related increase in the presence of lipid-laden macrophages in the alveoli of the lungs of the Npc1−/− mice starting as early as 28 days. Similar metabolic and histologic changes were evident in the lungs of the Npc2−/− mice. Together these findings demonstrate an intrinsic lung pathology in NPC disease that is of early onset and worsens over time.  相似文献   
9.
Caveolin-1 (Cav-1) is a major structural protein in caveolae in the plasma membranes of many cell types, particularly endothelial cells and adipocytes. Loss of Cav-1 function has been implicated in multiple diseases affecting the cardiopulmonary and central nervous systems, as well as in specific aspects of sterol and lipid metabolism in the liver and intestine. Lungs contain an exceptionally high level of Cav-1. Parameters of cholesterol metabolism in the lung were measured, initially in Cav-1-deficient mice (Cav-1−/−), and subsequently in Cav-1−/− mice that also lacked the lysosomal cholesterol transporter Niemann–Pick C1 (Npc1) (Cav-1−/−:Npc1−/−). In 50-day-old Cav-1−/− mice fed a low- or high-cholesterol chow diet, the total cholesterol concentration (mg/g) in the lungs was marginally lower than in the Cav-1+/+ controls, but due to an expansion in their lung mass exceeding 30%, whole-lung cholesterol content (mg/organ) was moderately elevated. Lung mass (g) in the Cav-1−/−:Npc1−/− mice (0.356 ± 0.022) markedly exceeded that in their Cav-1+/+:Npc1+/+ controls (0.137 ± 0.009), as well as in their Cav-1−/−:Npc1+/+ (0.191 ± 0.013) and Cav-1+/+:Npc1−/− (0.213 ± 0.022) littermates. The corresponding lung total cholesterol contents (mg/organ) in mice of these genotypes were 6.74 ± 0.17, 0.71 ± 0.05, 0.96 ± 0.05 and 3.12 ± 0.43, respectively, with the extra cholesterol in the Cav-1−/−:Npc1−/− and Cav-1+/+:Npc1−/− mice being nearly all unesterified (UC). The exacerbation of the Npc1 lung phenotype and increase in the UC level in the Cav-1−/−:Npc1−/− mice imply a regulatory role of Cav-1 in pulmonary cholesterol metabolism when lysosomal sterol transport is disrupted.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号