首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2021年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The mechanism of the regulation of the activation of ribulose1,5-bisphosphate carboxylase/ oxygenase (RuBisCO) by inorganicphosphate (Pi) in the presence of limiting concentrations ofCO2 was explored. The activation state of RuBisCO increasedsigmoidally following a biphasic kinetics against the concentrationof Pi in the activation mixture with an intermediary plateauat 2 to 3 mM Pi when the enzyme was activated for 30 min. Theintermediary plateau could not be seen when the preincubationtime was 10 min and the activation was completed at 10 mM Pi.RuBisCO from Euglena also showed a quite similar activationkinetics. The activation was not due to the contaminating CO2included in the stock Pi solution or in the activation buffercontaining the enzyme. The experiments with 2-carboxyarabinitol1,5-bisphosphate showed that the Pi stimulated activation wasdue to the promotion of binding of the activator CO2 to theactivation sites. It was also found that Pi increased the affinityof RuBisCO for the activator CO2 5.4-fold accompanied by a decreaseof the half-saturating concentration of CO2 to 1.6 µMat 20 mM MgCl2. Physiological significance of the effects ofPi on the activation of RuBisCO is discussed. 2Present address: Laboratory of Plant Molecular Physiology,Research Institute of Innovative Technology for the Earth (RITE),9-2 Kizugawadai, Kizu-cho, Soraku-gun, Kyoto, Japan.  相似文献   
2.
When the absorption of light energy exceeds the capacity for its utilization in photosynthesis, regulation of light harvesting is critical in order for photosynthetic organisms to minimize photo-oxidative damage. Thermal dissipation of excess absorbed light energy, measured as non-photochemical quenching (NPQ) of chlorophyll fluorescence, is induced rapidly in response to excess light conditions, and it is known that xanthophylls such as zeaxanthin and lutein, the transthylakoid pH gradient, and the PsbS protein are involved in this mechanism. Although mutants affecting NPQ and the biosynthesis of zeaxanthin and lutein were originally isolated and characterized at the physiological level in the unicellular green alga Chlamydomonas reinhardtii, the molecular basis of several of these mutants, such as npq1 and lor1, has not been determined previously. The recent sequencing of the C. reinhardtii nuclear genome has facilitated the search for C. reinhardtii homologs of plant genes involved in xanthophyll biosynthesis and regulation of light harvesting. Here we report the identification of C. reinhardtii genes encoding PsbS and lycopene ɛ-cyclase, and we show that the lor1 mutation, which affects lutein synthesis, is located within the lycopene ɛ-cyclase gene. In contrast, no homolog of the plant violaxanthin de-epoxidase (VDE) gene was found. Molecular markers were used to map the npq1 mutation, which affects VDE activity, as a first step toward the map-based cloning of the NPQ1 gene.  相似文献   
3.
In vivo activation states of ribulose 1,5-bisphosphate carboxylase/oxygenase(RuBisCO; EC 4.1.1.39 [EC] ) in the dark and light phases were measuredin intact leaves of Phaseolus and radish. The activation statewas high in the dark and comparable to the activation stateunder illumination at saturating light intensity. Then, we examined,using RuBisCO purified from spinach leaves, a mechanism forthe activation of RuBisCO in the dark when the stroma is neutralizedand lossess Mg2+ partly. Activation was not obserevd when theenzyme was incubated at air-level CO2 and 10 mM Mg2+ at pH rangingfrom 6.2 to 7.5. However, the activation was highly promotedin this pH range when the activation mixture contained 10 mMinorganic phosphate. The activation state was 50 to 60% betweenpH 7.0 and 7.8 and maximum over pH 8.2 in the presence of 10mM inorganic phosphate. Studies of the initial rate of activationshow that the promotion of activation was through stabilizationof the active form of the enzyme by inorganic phosphate, notby altering the pKa of the activator -amino group of Lys-201.The physiological significance of the activation of RuBisCOby inorganic phosphate in the dark is discussed. 3 Present address: Department of Biochemistry, University ofNebraska, Lincoln, NE 68588-0664, U.S.A.  相似文献   
4.
Arginine residues of spinach ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were chemically modified with phenylglyoxal (PhG). PhG inactivated Rubisco with a half-time of 20-25 min. An inclusion of a catalytic product, 3-phosphoglycerate (PGA), protected Rubisco from inactivation and delayed the half-time to 60-90 min. Peptide mapping and sequencing of Rubisco modified for 60 min with radiolabeled PhG in the presence of 10mM PGA revealed that Arg187, Arg258, and Arg431 of the large subunit were modified. The extent and rate of the decline in activity during catalysis (fallover phenomenon) were reduced by the modification. This is the first report identifying PhG-modified arginine residues and to demonstrate the effect of the modification of arginine residues on the kinetics of fallover.  相似文献   
5.
Comparison of subunit sequences and X-ray crystal structures of ribulose-1,5-bisphosphate carboxylase/oxygenase indicates that the loop between beta-strands A and B of the small subunit is one of the most variable regions of the holoenzyme. In prokaryotes and nongreen algae, the loop contains 10 residues. In land plants and green algae, the loop is comprised of approximately 22 and 28 residues, respectively. Previous studies indicated that the longer betaA-betaB loop was required for the assembly of cyanobacterial small subunits with plant large subunits in isolated chloroplasts. In the present study, chimeric small subunits were constructed by replacing the loop of the green alga Chlamydomonas reinhardtii with the sequences of Synechococcus or spinach. When these engineered genes were transformed into a Chlamydomonas mutant that lacks small-subunit genes, photosynthesis-competent colonies were recovered, indicating that loop size is not essential for holoenzyme assembly. Whereas the Synechococcus loop causes decreases in carboxylation V(max), K(m)(O(2)), and CO(2)/O(2) specificity, the spinach loop causes complementary decreases in carboxylation V(max), K(m)(O(2)), and K(m)(CO(2)) without a change in specificity. X-ray crystal structures of the engineered proteins reveal remarkable similarity between the introduced betaA-betaB loops and the respective loops in the Synechococcus and spinach enzymes. The side chains of several large-subunit residues are altered in regions previously shown by directed mutagenesis to influence CO(2)/O(2) specificity. Differences in the catalytic properties of divergent Rubisco enzymes may arise from differences in the small-subunit betaA-betaB loop. This loop may be a worthwhile target for genetic engineering aimed at improving photosynthetic CO(2) fixation.  相似文献   
6.
A recent X-ray crystal structure of ribulose-1,5-bisphosphate carboxylase/oxygenase from the green alga Chlamydomonas reinhardtii lacks 13 carboxy-terminal residues of the small subunit. To determine the importance of this divergent region, a non-sense mutation was created that removes nine residues. This engineered gene was transformed into a Chlamydomonas strain that lacks the small-subunit gene family. The resulting holoenzyme has a normal CO2/O2 specificity but decreased carboxylation Vmax. Whereas wild-type enzyme retained most of its carboxylase activity after a 10-min incubation at 55°C, the mutant enzyme was inactivated. Thus, although disordered or divergent, the carboxy terminus is required for maximal activity and stability.  相似文献   
7.
Many enzymes are composed of subunits with the identical primary structure. It has been believed that the protein structure of these subunits is the same. Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) comprises eight large subunits with the identical amino acid sequence and eight small subunits. Rotation of the side chains of the lysine residues, Lys-21 and Lys-305, in each of the eight large subunits in spinach RuBisCO in two ways produces microheterogeneity among the subunits. These structures are stabilized through hydrogen bonds by water molecules incorporated into the large subunits. This may cause different effects upon catalysis and a hysteretic, time-dependent decrease in activity in spinach RuBisCO. Changing the amino acid residues corresponding to Lys-21 and Lys-305 in non-hysteretic Chromatium vinosum RuBisCO to lysine induces hysteresis and increases the catalytic activity from 8.8 to 15.8 per site per second. This rate is approximately five times higher than that of the higher-plant enzyme.  相似文献   
8.
The production of recombinant therapeutic proteins from animal or human cell lines entails the risk of endogenous viral contamination from cell substrates and adventitious agents from raw materials and environment. One of the approaches to control such potential viral contamination is to ensure the manufacturing process can adequately clear the potential viral contaminants. Viral clearance for production of human monoclonal antibodies is achieved by dedicated unit operations, such as low pH inactivation, viral filtration, and chromatographic separation. The process development of each viral clearance step for a new antibody production requires significant effort and resources invested in wet laboratory experiments for process characterization studies. Machine learning methods have the potential to help streamline the development and optimization of viral clearance unit operations for new therapeutic antibodies. The current work focuses on evaluating the usefulness of machine learning methods for process understanding and predictive modeling for viral clearance via a case study on low pH viral inactivation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号