首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   3篇
  2023年   2篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1993年   2篇
  1978年   2篇
  1974年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
Abstract

A new series of homosulfocoumarins (3H-1,2-benzoxathiepine 2,2-dioxides) possessing various substitution patterns and moieties in the 7, 8 or 9 position of the heterocylic ring were prepared by original procedures and investigated for the inhibition of four physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the human (h) hCA I, II, IX and XII. The 8-substituted homosulfocoumarins were the most effective hCA IX/XII inhibitors followed by the 7-substituted derivatives, whereas the substitution pattern in position 9 led to less effective binders for the transmembrane, tumour-associated isoforms IX/XII. The cytosolic isoforms hCA I and II were not inhibited by these compounds, similar to the sulfocoumarins/coumarins investigated earlier. As hCA IX and XII are validated anti-tumour targets, with one sulphonamide (SLC-0111) in Phase Ib/II clinical trials, finding derivatives with better selectivity for inhibiting the tumour-associated isoforms over the cytosolic ones, as the homosulfocoumarins reported here, is of crucial importance.  相似文献   
2.
Targeted species‐specific and community‐wide molecular diagnostics tools are being used with increasing frequency to detect invasive or rare species. Few studies have compared the sensitivity and specificity of these approaches. In the present study environmental DNA from 90 filtered seawater and 120 biofouling samples was analyzed with quantitative PCR (qPCR), droplet digital PCR (ddPCR) and metabarcoding targeting the cytochrome c oxidase I (COI) and 18S rRNA genes for the Mediterranean fanworm Sabella spallanzanii. The qPCR analyses detected S. spallanzanii in 53% of water and 85% of biofouling samples. Using ddPCR S. spallanzanii was detected in 61% of water of water and 95% of biofouling samples. There were strong relationships between COI copy numbers determined via qPCR and ddPCR (water R2 = 0.81, p < .001, biofouling R2 = 0.68, p < .001); however, qPCR copy numbers were on average 125‐fold lower than those measured using ddPCR. Using metabarcoding there was higher detection in water samples when targeting the COI (40%) compared to 18S rRNA (5.4%). The difference was less pronounced in biofouling samples (25% COI, 29% 18S rRNA). Occupancy modelling showed that although the occupancy estimate was higher for biofouling samples (ψ = 1.0), higher probabilities of detection were derived for water samples. Detection probabilities of ddPCR (1.0) and qPCR (0.93) were nearly double metabarcoding (0.57 to 0.27 marker dependent). Studies that aim to detect specific invasive or rare species in environmental samples should consider using targeted approaches until a detailed understanding of how community and matrix complexity, and primer biases affect metabarcoding data.  相似文献   
3.
4.
Coumarin and its derivatives are naturally occurring substances with multiple biological activities. Here we demonstrate that prophylactic peroral administration of coumarin or 7-hydroxycoumarin (7-OHC) enhances resistance to subsequent lethal Salmonella enterica Serovar Typhimurium infection in mice. 7-OHC decreased bacterial load in liver and spleen, and enhanced phagocytosis and bacterial killing by macrophages when applied in vitro and in vivo. 7-OHC treatment induced significant NO release in peritoneal macrophage cultures. The observed protective effect correlated with the induction of Th1-associated cytokines, such as IL-12, IFN-gamma, and TNF-alpha. These data demonstrate a clear immunomodulatory potential of coumarins which might have important therapeutic implications to enhance resistance to infection.  相似文献   
5.
228 strains of soil and rhizosphere pseudomonads isolated in different geographic zones were screened, with the use of two tester systems, for the capacity to produce N-acyl-homoserine lactones (AHLs), which are autoinducers involved in quorum-sensing (QS) regulation. AHL production was found in 11.4% of the strains investigated. In five Pseudomonas chlororaphis strains shown to be active AHL producers and chosen for further study, PCR identified two QS systems that involved the phzI, phzR, csaI, and csaR genes; this finding suggests the conservative nature of these regulation systems in P. chloroaphis. Strain P. chlororaphis 449, chosen as a model object and studied in greater detail, produced three AHL species including N-butanoyl-homoserine lactone and N-hexanoyl-homoserine lactone. This strain produced three types of phenazine antibiotics, as well as siderophores and cyanide; it also exhibited antagonistic properties toward a wide spectrum of phytopathogenic fungi. The phzI and csaI genes, coding for synthases of AHLs of two types, were cloned and sequenced; mutants with knocked-out phzI and csaI genes were obtained. With the use of transposon mutagenesis and the gene substitution method, mutations were obtained in the global expression regulator genes gacS, coding for the GacA-GacS regulation system kinase, and rpoS, coding for the sigma S subunit of RNA polymerase. The effect of these mutations on the AHL synthesis and on the regulation of various metabolic processes in P. chlororaphis was studied.  相似文献   
6.
The brackish Baltic Sea hosts species of various origins and environmental tolerances. These immigrated to the sea 10,000 to 15,000 years ago or have been introduced to the area over the relatively recent history of the system. The Baltic Sea has only one known endemic species. While information on some abiotic parameters extends back as long as five centuries and first quantitative snapshot data on biota (on exploited fish populations) originate generally from the same time, international coordination of research began in the early twentieth century. Continuous, annual Baltic Sea-wide long-term datasets on several organism groups (plankton, benthos, fish) are generally available since the mid-1950s. Based on a variety of available data sources (published papers, reports, grey literature, unpublished data), the Baltic Sea, incl. Kattegat, hosts altogether at least 6,065 species, including at least 1,700 phytoplankton, 442 phytobenthos, at least 1,199 zooplankton, at least 569 meiozoobenthos, 1,476 macrozoobenthos, at least 380 vertebrate parasites, about 200 fish, 3 seal, and 83 bird species. In general, but not in all organism groups, high sub-regional total species richness is associated with elevated salinity. Although in comparison with fully marine areas the Baltic Sea supports fewer species, several facets of the system''s diversity remain underexplored to this day, such as micro-organisms, foraminiferans, meiobenthos and parasites. In the future, climate change and its interactions with multiple anthropogenic forcings are likely to have major impacts on the Baltic biodiversity.  相似文献   
7.
The role of the zebra mussel Dreissena polymorpha in redistribution of total particulate material (TPM) between the water column and bottom sediment was estimated using the TPM budget for a mussel bed in the Curonian lagoon, the Baltic Sea. Seasonal clearance rates were derived from the TPM budget assuming two resuspension scenarios: no resuspension and full resuspension of biodeposits. Estimated clearance rates for both scenarios were compared with the rates calculated from the population clearance rate model. Seasonal clearance rates estimated using the population model (1.1 and 11.8 l g−1 SFDW day−1) fitted well into the interval of seasonal clearance rates calculated from TPM budgets assuming no resuspension of biodeposits (3.2 and 21.4 l g SFDW−1 day−1). In the scenario with biodeposits resuspension clearance rates were much higher (57.4 and 148.9 g SFDW−1 day−1). The ratio of clearance to residence time was highly dependent on the fate of biodeposits. Therefore its use in interpretation of the species impact on TPM was limited. An alternative measure based on the ratio of the amount of TPM biodeposited to TPM transported into the bed was used. It was found that zebra mussels are able to deposit between 10 and 30% of the incoming TPM, and the amount of biodeposited material was correlated with water residence time. Results indicate that the impact of zebra mussels on TPM in the lagoon is small relative to the high transport rates of TPM over the bed. However, annual biosedimentation rate (~590 g m−2) in the mussel bed was higher than physical deposition rate (~380 g m−2) in accumulation areas devoid of large suspension feeders. We suggest that a local impact due to enhanced availability of organic material to other trophic groups of associated benthic organisms may be more significant than effects on TPM pathways at an ecosystem scale.  相似文献   
8.
Plant peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways, including fatty acid b-oxidation,photorespiration, and degradation of reactive oxygen species. The compartmentalization of metabolic pathways into peroxisomes is a strategy for organizing the metabolic network and improving pathway efficiency. An important prerequisite, however, is the exchange of metabolites between peroxisomes and other cell compartments. Since the first studies in the 1970s scientists contributed to understanding how solutes enter or leave this organelle.This review gives an overview about our current knowledge of the solute permeability of peroxisomal membranes described in plants, yeast, mammals and other eukaryotes. In general, peroxisomes contain in their bilayer membrane specific transporters for hydrophobic fatty acids(ABC transporter) and large cofactor molecules(carrier for ATP, NAD and CoA). Smaller solutes with molecular masses below 300–400 Da, like the organic acids malate, oxaloacetate, and 2-oxoglutarate, are shuttled via non-selective channels across the peroxisomal membrane.In comparison to yeast, human, mammals and other eukaryotes, the function of these known peroxisomal transporters and channels in plants are discussed in this review.  相似文献   
9.
Zebra mussel filtration rates and regulating factors have been addressed earlier in a number of studies. Still, only a few of them have taken into consideration the refiltration phenomenon, and therefore the direct extrapolation of experimental results may only give the potential filtering capacity, and hence, over- or underestimate the actual amount of seston being removed by zebra mussels in an ecosystem. The current experimental study aimed to gain insight into the refiltration effect on the clearance rate of the zebra mussels at relatively high seston concentrations, and its potential role in controlling the filtration efficiency of the zebra mussel population. The experiment was conducted in a laboratory flume following the Latin squares design with one fixed (mussel density) and three random factors (initial total particulate matter (TPM) concentration, flume “wall effect” and distance from the flume inflow area) considered. The results showed the significant effects of mussel density and the TPM concentration on the effective clearance rate (ECR) of zebra mussels. The higher ECR values were obtained at denser mussel clumps and lower TPM concentrations. The flume “wall effect” had no significant effect on the ECR, whereas the distance from the flume inflow area appeared to have a significant impact. A positive relationship between ECR and the zebra mussel density was most evident in the proximity of the TPM source. Based on the results, we assume that at high TPM concentration, refiltration may assert itself by the elevated net clearance rate of mussels within dense clumps compared to that of mussels at relatively low individual densities. This should be taken into consideration while modelling and assessing the role of the zebra mussel in energy flow and redistribution of organic matter in an ecosystem.  相似文献   
10.
Microcin C is a ribosome-synthesized heptapeptide that contains a modified adenosine monophosphate covalently attached to the C-terminal aspartate. Microcin C is a potent inhibitor of bacterial cell growth. Based on the in vivo kinetics of inhibition of macromolecular synthesis, Microcin C targets translation, through a mechanism that remained undefined. Here, we show that Microcin C is a subject of specific degradation inside the sensitive cell. The product of degradation, a modified aspartyl-adenylate containing an N-acylphosphoramidate linkage, strongly inhibits translation by blocking the function of aspartyl-tRNA synthetase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号