首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   4篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   3篇
  2005年   5篇
  2004年   3篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有44条查询结果,搜索用时 15 毫秒
1.
The role of poly(ADP-ribosyl)ation in chromatin replication and the activity of poly(ADP-ribose) synthetase in the newly synthesized and old chromatin was studied. It was found that 3-aminobenzamide, which is an inhibitor of poly(ADP-ribose) synthetase, had no effect on the initiation of DNA synthesis and only a moderate effect on DNA chain elongation. However, poly(ADP-ribose) synthetase activity in the newly replicated chromatin was two to three times higher than that of the unreplicated chromatin.  相似文献   
2.
In the pH interval 10.5-11.8, 70% of the nonhistone proteins normally present in rat liver chromatin were dissociated. The rest remained complexed with DNA even at pH 13. Dodecylsulfate-polyacrylamide gel electrophoresis revealed that the majority of the high-molecular-weight nonhistone proteins together with a few characteristic fractions with molecular weights of 40 000-60 000 remained in the alkali-resistant group. L-[14C]Leucine pulse-labelling experiments showed that the specific radioactivity of the alkali-labile nonhistone proteins was 2-3 times higher than that of the alkali-resistant nonhistone proteins, which, in turn, had the same specific radioactivity as that of the histones. The same held true for chromatin from regenerating rat liver. In the course of a 21-day chase the specific radioactivity of the alkali-labile nonhistone proteins gradually decreased and finally became 3 times lower than that of the alkali-resistant nonhistone proteins. On the contrary, the ratio of the specific radioactivities of the alkali-resistant nonhistone proteins and of the histones to the specific radioactivity of DNA remained constant during the chase. A conclusion can be drawn that a fraction of liver nonhistone proteins exists which is alkali-resistant and is conserved in chromatin like histones.  相似文献   
3.
UV irradiation causes inflammatory and proliferative cellular responses. We have proposed previously that these effects are, to a large extent, caused by the ligand-independent activation of several receptor tyrosine kinases due to the inactivation of their negative control elements, the protein tyrosine phosphatases (PTPs). We examined the mechanism of this inactivation and found that, in addition to reversible oxidation of PTPs, UV triggers a novel mechanism: induced degradation of PTPs by calpain, which requires both calpain activation and substrate PTP oxidative modification. This as yet unrecognized effect of UV is irreversible, occurs predominantly with UVA and UVB, the range of wavelengths in sunlight that reach the skin surface, and at physiologically relevant doses.  相似文献   
4.
Mouse erythroleukemic F4 N cells were treated with mimosine, etoposide, Fe(II)-EDTA, and Cu(II) in the presence of ascorbate. DNA was isolated and subjected to agarose gel electrophoresis and the size and distribution of the DNA fragments produced by the agents were compared. With increasing concentration of Cu(II) the production of DNA fragments was increased without decrease of the average length of the fragments, and their sizes were similar to those produced by etoposide as expected for cleavage of DNA at the nuclear matrix attachments sites. In contrast, mimosine and Fe(II) produced fragments of random size and with the progression of the reaction the average length of the fragments decreased. These results indicate that mimosine cuts DNA in a random fashion, regardless of its higher order chromatin organization. A conclusion is drawn that the DNA fragments obtained after mimosine treatment are a result of mimosine-assisted, Fe(II) dependent Fenton-like reactions randomly cutting chromosomal DNA.  相似文献   
5.
Mimosine, DNA breaKs, Free Radicals, Fenton Reaction Supercoiled plasmid DNA was treated in vitro with H2O2, DTT and either Fe (II), Fe (II)-EDTA or Fe (II)-mimosine. The rate of DNA break formation was followed by the conversion of the supercoiled form into relaxed-circular and linear forms. In the concentration interval of 0-4 microM Fe (II), Fe (II)-EDTA slowed-down the formation of DNA breaks, while Fe (II)-mimosine enhanced the rate of break formation up to several times. A conclusion is drawn that this enhancement is due to the increased affinity of the Fe (II)-mimosine complex to DNA.  相似文献   
6.
Treatment of mammalian cells with mimosine generates DNA breaks   总被引:3,自引:0,他引:3  
Exponentially growing mouse erythroleukemia (MEL) cells and quiescent human peripheral blood lymphocytes (PBL) were treated with different concentrations of the nonprotein amino acid mimosine for 16 h. The treatment of the cycling cell population with 400 microM mimosine caused inhibition of DNA replication, changes in the progression of the cells in the cell cycle, and apoptosis. Nucleoid sedimentation analysis and comet assay were used to monitor the appearance and accumulation of DNA breaks. The rate of break accumulation was dose-dependent, did not depend on the stage of the cell cycle and was not connected with the mechanism of DNA replication. The data indicate that the effects of mimosine on DNA synthesis and the cell cycle may be a result of introduction of breaks into DNA.  相似文献   
7.
Constitutive activation of receptor tyrosine kinases (RTKs) is a frequent event in human cancer cells. Activating mutations in Fms-like tyrosine kinase 3 (FLT-3), notably, internal tandem duplications in the juxtamembrane domain (FLT-3 ITD), have been causally linked to acute myeloid leukemia. As we describe here, FLT-3 ITD exists predominantly in an immature, underglycosylated 130-kDa form, whereas wild-type FLT-3 is expressed predominantly as a mature, complex glycosylated 150-kDa molecule. Endogenous FLT-3 ITD, but little wild-type FLT-3, is detectable in the endoplasmic reticulum (ER) compartment. Conversely, cell surface expression of FLT-3 ITD is less efficient than that of wild-type FLT-3. Inhibition of FLT-3 ITD kinase by small molecules, inactivating point mutations, or coexpression with the protein-tyrosine phosphatases (PTPs) SHP-1, PTP1B, and PTP-PEST but not RPTPalpha promotes complex glycosylation and surface localization. However, PTP coexpression has no effect on the maturation of a surface glycoprotein of vesicular stomatitis virus. The maturation of wild-type FLT-3 is impaired by general PTP inhibition or by suppression of endogenous PTP1B. Enhanced complex formation of FLT-3 ITD with the ER-resident chaperone calnexin indicates that its retention in the ER is related to inefficient folding. The regulation of RTK maturation by tyrosine phosphorylation was observed with other RTKs as well, defines a possible role for ER-resident PTPs, and may be related to the altered signaling quality of constitutively active, transforming RTK mutants.  相似文献   
8.
Chromatin from rat liver and Ehrlich ascites tumor (EAT) was isolated by two different procedures and the chromatin preparations were incubated at 37 degrees C. To follow the proteolysis at 0, 4, 8, and 24 hrs, aliquots were taken and analysed by SDS polyacrylamide gel electrophoresis. Although there were some differences in the proteolytic activity of the different chromatins, in general they were found to sustain a several hours incubation without appreciable degradation to occur. However, when prior to incubation the chromatins were dissociated, a rapid proteolysis took place. This shows that there are specific, chromatin bound proteinases that are inactive while immobilized in the chromatin structure and become activated on dissociation.  相似文献   
9.
Chromatin modification plays an important role in modulating the access of homologous recombination proteins to the sites of DNA damage. TIP49 is highly conserved component of chromatin modification/remodeling complexes, but its involvement in homologous recombination repair in mammalian cells has not been examined in details. In the present communication we studied the role of TIP49 in recruitment of the key homologous recombination protein RAD51 to sites of DNA damage. RAD51 redistribution to chromatin and nuclear foci formation induced by double-strand breaks and interstrand crosslinks were followed under conditions of TIP49 depletion by RNA interference. TIP49 silencing reduced RAD51 recruitment to chromatin and nuclear foci formation to about 50% of that of the control. Silencing of TIP48, which is closely related to TIP49, induced a similar reduction in RAD51 foci formation. RAD51 foci reduction in TIP49-silenced cells was not a result of defective DNA damage checkpoint signaling as judged by the normal histone H2AX phosphorylation and cell cycle distribution. Treatment with the histone deacetylase inhibitor sodium butyrate restored RAD51 foci formation in the TIP49-depleted cells. The results suggest that as a constituent of chromatin modification complexes TIP49 may facilitate the access of the repair machinery to the sites of DNA damage.  相似文献   
10.
Improved methods are needed for in situ characterization of post-translational modifications in cell lines and tissues. For example, it is desirable to monitor the phosphorylation status of individual receptor tyrosine kinases in samples from human tumors treated with inhibitors to evaluate therapeutic responses. Unfortunately the leading methods for observing the dynamics of tissue post-translational modifications in situ, immunohistochemistry and immunofluorescence, exhibit limited sensitivity and selectivity. Proximity ligation assay is a novel method that offers improved selectivity through the requirement of dual recognition and increased sensitivity by including DNA amplification as a component of detection of the target molecule. Here we therefore established a generalized in situ proximity ligation assay to investigate phosphorylation of platelet-derived growth factor receptor beta (PDGFRbeta) in cells stimulated with platelet-derived growth factor BB. Antibodies specific for immunoglobulins from different species, modified by attachment of DNA strands, were used as secondary proximity probes together with a pair of primary antibodies from the corresponding species. Dual recognition of receptors and phosphorylated sites by the primary antibodies in combination with the secondary proximity probes was used to generate circular DNA strands; this was followed by signal amplification by replicating the DNA circles via rolling circle amplification. We detected tyrosine phosphorylated PDGFRbeta in human embryonic kidney cells stably overexpressing human influenza hemagglutinin-tagged human PDGFRbeta in porcine aortic endothelial cells transfected with the beta-receptor, but not in cells transfected with the alpha-receptor, and also in immortalized human foreskin fibroblasts, BJ hTert, endogenously expressing the PDGFRbeta. We furthermore visualized tyrosine phosphorylated PDGFRbeta in tissue sections from fresh frozen human scar tissue undergoing wound healing. The method should be of great value to study signal transduction, screen for effects of pharmacological agents, and enhance the diagnostic potential in histopathology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号