首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   824篇
  免费   73篇
  2022年   5篇
  2021年   10篇
  2020年   14篇
  2019年   16篇
  2018年   22篇
  2017年   15篇
  2016年   12篇
  2015年   36篇
  2014年   35篇
  2013年   50篇
  2012年   55篇
  2011年   72篇
  2010年   44篇
  2009年   24篇
  2008年   46篇
  2007年   33篇
  2006年   41篇
  2005年   44篇
  2004年   45篇
  2003年   24篇
  2002年   36篇
  2001年   18篇
  2000年   21篇
  1999年   15篇
  1998年   8篇
  1997年   8篇
  1996年   10篇
  1995年   5篇
  1994年   11篇
  1993年   4篇
  1992年   12篇
  1991年   8篇
  1990年   6篇
  1989年   12篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   6篇
  1976年   5篇
  1975年   4篇
  1973年   4篇
  1970年   3篇
  1969年   2篇
  1967年   2篇
排序方式: 共有897条查询结果,搜索用时 343 毫秒
1.
The conformation of the glucotriose unit of the protein glycosylation precursor Glc3Man9GlcNAc2 was assessed by deuterium exchange studies on the model tetrasaccharide alpha Glc----2 alpha Glc----3 alpha Glc----3 alpha Man----OCH2CH2CH3 dissolved in deuterated dimethyl sulfoxide. The hydroxyl proton on C-2 of the nonreducing end glucose and on C-4 of the glucose attached to mannose both show dramatic isotope shifts indicative of a strong hydrogen bond between these two hydroxyl groups. Such a hydrogen bond requires a fixed conformation of the glucotriose unit that brings these hydroxyl groups within 3 A of each other, a conformation that is supported by molecular modeling based on hard-sphere exo-anomeric (HSEA) calculations. The temperature dependence of the hydroxyl proton chemical shifts supports the postulated hydrogen bond, and the torsional angles between the three glucose units derived from the HSEA calculations are consistent with results from related studies on other saccharides. The results support a model for biochemical function in which the glucotriose unit could modulate the activity of the oligosaccharyltransferase by binding in a fixed conformation to a specific effector site in the enzyme.  相似文献   
2.
Graphite furnace atomic absorption spectrometry, after improved matrix modification and using Zeeman background correction, was used to measure the serum selenium content of healthy adults living in the Antwerp region (Belgium). The mean serum concentration of 13 men and 13 women, sampled once a month during 1 year, was 84.3 +/- 9.4ng/ml with a broad range of 51.4-121.7 ng/ml. The intra-individual variation was remarkably high. Recent literature on selenium concentrations is reviewed and values are tabulated, with limitation to healthy adults and European countries. The mean serum selenium concentration measured corresponded well to older literature data for Belgium. The obtained values were found to be in the medium range compared with the literature data for other European countries.  相似文献   
3.
By applying a rapid filtration technique to isolated brush border membrane vesicles from guinea pig ileum, 36Cl uptake was quantified in the presence and absence of electrical, pH and alkali-metal ion gradients. A mixture of 20 mM-Hepes and 40 mM-citric acid, adjusted to the desired pH with Tris base, was found to be the most suitable buffer. Malate and Mes could be used to replace the citrate, but succinate, acetate and maleate proved to be unsuitable. In the absence of a pH gradient (pHout:pHin = 7.5:7.5), Cl- uptake increased slightly when an inside-positive membrane potential was applied, but uphill transport was never observed. A pH gradient (pHout:pHin = 5.0:7.5) induced both a 400% increase in the initial Cl- influx rate and a long-lasting (20 to 300 s) overshoot, indicating that a proton gradient can furnish the driving force for uphill Cl- transport. Under pH gradient conditions, initial Cl- entry rates had the following characteristics. (1) They were unaffected by cis-Na+ and/or -K+, indicating the absence of Cl-/K+, Cl-/Na+ or Cl-/K+/Na+ symport activity. (2) Inhibition by 20-100 mM-trans-Na+ and/or -K+ occurred, independent of the existence of an ion gradient. (3) Cl- entry was practically unaffected by short-circuiting the membrane potential with equilibrated potassium and valinomycin. (4) Carbonyl cyanide m-chlorophenylhydrazone was strongly inhibitory and so, to a lesser extent, was 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid [(SITS)], independent of the sign and size of the membrane potential. (5) Cl- entry was negligibly increased (less than 30%) by either trans-Cl- or -HCO3-, indicating the absence of an obligatory Cl-/anion antiport activity. In contrast, the height of the overshoot at 60 s was increased by trans-Cl-, indicating time-dependent inhibition of 36Cl efflux. That competitive inhibition of 36Cl fluxes by anions is involved here is supported by initial influx rate experiments demonstrating: (1) the saturability of Cl- influx, which was found to exhibit Michaelis-Menten kinetics; and (2) competitive inhibition of influx by cis-Cl- and -Br-. Quantitatively, the conclusion is warranted that over 85% of the total initial Cl- uptake energized by a pH gradient involves an electroneutral Cl-/H+ symporter or its physicochemical equivalent, a Cl-/OH- antiporter, exhibiting little Cl- uniport and either Cl-/Cl- or Cl-/HCO3- antiport activities.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
4.
The role of phospholipid in the binding of coenzyme, NAD(H), to 3-hydroxybutyrate dehydrogenase, a lipid-requiring membrane enzyme, has been studied with the ultrafiltration binding method, which we optimized to quantitate weak ligand binding (KD in the range 10-100 microM). 3-Hydroxybutyrate dehydrogenase has a specific requirement of phosphatidylcholine (PC) for optimal function and is a tetramer quantitated both for the apodehydrogenase, which is devoid of phospholipid, and for the enzyme reconstituted into phospholipid vesicles in either the presence or absence of PC. We find that (i) the stoichiometry for NADH and NAD binding is 0.5 mol/mol of enzyme monomer (2 mol/mol of tetramer); (ii) the dissociation constant for NADH binding is essentially the same for the enzyme reconstituted into the mixture of mitochondrial phospholipids (MPL) (KD = 15 +/- 3 microM) or into dioleoyl-PC (KD = 12 +/- 3 microM); (iii) the binding of NAD+ to the enzyme-MPL complex is more than an order of magnitude weaker than NADH binding (KD approximately 200 microM versus 15 microM) but can be enhanced by formation of a ternary complex with either 2-methylmalonate (apparent KD = 1.1 +/- 0.2 microM) or sulfite to form the NAD-SO3- adduct (KD = 0.5 +/- 0.1 microM); (iv) the binding stoichiometry for NADH is the same (0.5 mol/mol) for binary (NADH alone) and ternary complexes (NADH plus monomethyl malonate); (v) binding of NAD+ and NADH together totals 0.5 mol of NAD(H)/mol of enzyme monomer, i.e., two nucleotide binding sites per enzyme tetramer; and (vi) the binding of nucleotide to the enzyme reconstituted with phospholipid devoid of PC is weak, being detected only for the NAD+ plus 2-methylmalonate ternary complex (apparent KD approximately 50 microM or approximately 50-fold weaker binding than that for the same complex in the presence of PC). The binding of NADH by equilibrium dialysis or of spin-labeled analogues of NAD+ by EPR spectroscopy gave complementary results, indicating that the ultrafiltration studies approximated equilibrium conditions. In addition to specific binding of NAD(H) to 3-hydroxybutyrate dehydrogenase, we find significant binding of NAD(H) to phospholipid vesicles. An important new finding is that the nucleotide binding site is present in 3-hydroxybutyrate dehydrogenase in the absence of activating phospholipid since (a) NAD+, as the ternary complex with 2-methylmalonate, binds to the enzyme reconstituted with phospholipid devoid of PC and (b) the apodehydrogenase, devoid of phospholipid, binds NADH or NAD-SO3- weakly (half-maximal binding at approximately 75 microM NAD-SO3- and somewhat weaker binding for NADH).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
5.
6.
Interactions between membranes and cytolytic peptides   总被引:30,自引:0,他引:30  
The physico-chemical and biological properties of cytolytic peptides derived from diverse living entities have been discussed. The principal sources of these agents are bacteria, higher fungi, cnidarians (coelenterates) and the venoms of snakes, insects and other arthropods. Attention has been directed to instances in which cytolytic peptides obtained from phylogenetically remote as well as from related sources show similarities in nature and/or mode of action (congeneric lysins). The manner in which cytolytic peptides interact with plasma membranes of eukaryotic cells, particularly the membranes of erythrocytes, has been discussed with emphasis on melittin, thiolactivated lysins and staphylococcal alpha-toxin. These and other lytic peptides are characterized in Table III. They can be broadly categorized into: (a) those which alter permeability to allow passage of ions, this process eventuating in colloid osmotic lysis, signs of which are a pre-lytic induction or latent period, pre-lytic leakage of potassium ions, cell swelling and inhibition of lysis by sucrose. Examples of lysins in which this mechanism is involved are staphylococcal alpha-toxin, streptolysin S and aerolysin; (b) phospholipases causing enzymic degradation of bilayer phospholipids as exemplified by phospholipases C of Cl. perfringens and certain other bacteria; (c) channel-forming agents such as helianthin, gramicidin and (probably) staphylococcal delta-toxin in which toxin molecules are thought to embed themselves in the membrane to form oligomeric transmembrane channels.  相似文献   
7.
Formation and properties of cell-size lipid bilayer vesicles   总被引:4,自引:2,他引:2       下载免费PDF全文
Hydration of single or mixed phospholipids or lipid protein mixtures at low ionic strength results in the formation of a population of large, solvent free, single bilayer vesicles with included volumes of up to 300 microliters/mumol lipid. Their size ranges from 0.1 to 300 microns and they can be sorted out according to size by centrifugation. When formed in distilled water their internal solution has a conductivity of 20-50 microseconds/cm-1, an osmolarity of 0.5-5 mOsM, and a density of 1.0005-1.001. The osmotic pressure produced by the internal solutes cause a surface stress of 25 dyn/cm for a 20-microns vesicle. Their elastic constant ranges from 75-150 dyn/cm. During formation they can internalize particles such as latex beads or cell nuclei. They can be impaled with microelectrodes, or patch clamped. They can also be sealed to a small Vaseline-treated hole in a thin partition between two aqueous compartments. Sealing occurs in two stages. In the first stage sealing resistance is similar to that seen with patch-clamp pipettes. In the second stage, a much tighter seal is obtained. After sealing, the smaller portion of the sealed vesicle can be selectively broken by an electric shock leaving a single membrane across the hole. The capacitance and resistance of such membranes, in the presence of 10 mM NaCl, are approximately 0.7 microF/cm2 and 10(8) omega cm2 for pure lipid vesicles. Gramicidin increases the membrane conductance and monazomycin induces voltage-dependent gating thus providing further evidence that the vesicles are bounded by a single bilayer.  相似文献   
8.
W J Page  J Manchak    B Rudy 《Applied microbiology》1992,58(9):2866-2873
Azotobacter vinelandii UWD formed polyhydroxyalkanoate (PHA) copolymers containing beta-hydroxybutyrate and beta-hydroxyvalerate (HV) when grown in a medium containing glucose as the primary C source and valerate (pentanoate) as a precursor. Copolymer was not formed when propionate was added to the glucose medium but was formed when heptanoate, nonanoate, or trans-2-pentenoate was present. Optimal levels of HV were formed when valerate was added at the time of maximum PHA synthesis, although HV incorporation was not dependent on glucose catabolism. HV content in the polymer was increased from 17 to 24 mol% by adding 10 to 40 mM valerate to glucose medium, but HV insertion into the polymer occurred at a fixed rate. Similarly, the addition of valerate to a fed-batch culture of strain UWD in beet molasses in a fermentor produced 19 to 22 g of polymer per liter, containing 8.5 to 23 mol% HV after 38 to 40 h. The synthesis of HV in these cultures also occurred at a fixed rate (2.3 to 2.8 mol% h-1), while the maximum PHA production rate was 1.1 g liter-1 h-1. During synthesis of copolymer in batch or fed-batch culture, the yield from conversion of glucose into PHA (YP/S) remained at maximum theoretical efficiency (greater than or equal to 0.33 g of PHA per g of glucose consumed). Up to 45 mol% C source, but the PHA produced amounted to less than 1 g/liter. The combination of 30 mM valerate as a sole C source and 0.5 mM 4-pentenoate increased the HV content in the polymer to 52 mol%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号