首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   2篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   4篇
  2014年   2篇
  2012年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   2篇
排序方式: 共有22条查询结果,搜索用时 46 毫秒
1.
Allene oxide, (9Z,11E)-12,13-epoxy-9,11-octadecadienoic acid (12,13-EOD), was prepared by incubation of linoleic acid (13S)-hydroperoxide with flaxseed allene oxide synthase (AOS) and purified (as methyl ester) by low temperature HPLC. Identification of pure 12,13-EOD was substantiated by its UV and (1)H NMR spectra and by GC-MS data for its methanol trapping product. The methyl ester of 12,13-EOD (but not the free carboxylic acid) is slowly cyclized in hexane solution, affording a novel cyclopentenone cis-12-oxo-10-phytoenoic acid. Free carboxylic form of 12,13-EOD does not cyclize due to the exceeding formation of macrolactone (9Z)-12-oxo-9-octadecen-11-olide. The spontaneous cyclization of pure natural allene oxide (12,13-EOD) into cis-cyclopentenone have been observed first time.  相似文献   
2.
Rhamnogalacturonan lyases (RGLs; EC 4.2.2.23) degrade the rhamnogalacturonan I (RG‐I) backbone of pectins present in the plant cell wall. These enzymes belong to polysaccharide lyase family 4, members of which are mainly from plants and plant pathogens. RGLs are investigated, as a rule, as pathogen ‘weapons’ for plant cell wall degradation and subsequent infection. Despite the presence of genes annotated as RGLs in plant genomes and the presence of substrates for enzyme activity in plant cells, evidence supporting the involvement of this enzyme in certain processes is limited. The differential expression of some RGL genes in flax (Linum usitatissimum L.) tissues, revealed in our previous work, prompted us to carry out a total revision (phylogenetic analysis, analysis of expression and protein structure modeling) of all the sequences of flax predicted as coding for RGLs. Comparison of the expressions of LusRGL in various tissues of flax stem revealed that LusRGLs belong to distinct phylogenetic clades, which correspond to two co‐expression groups. One of these groups comprised LusRGL6‐A and LusRGL6‐B genes and was specifically upregulated in flax fibers during deposition of the tertiary cell wall, which has complex RG‐I as a key noncellulosic component. The results of homology modeling and docking demonstrated that the topology of the LusRGL6‐A catalytic site allowed binding to the RG‐I ligand. These findings lead us to suggest the presence of RGL activity in planta and the involvement of special isoforms of RGLs in the modification of RG‐I of the tertiary cell wall in plant fibers.  相似文献   
3.
Modern multilocus molecular techniques are a powerful tool in the detection and analysis of cryptic taxa. However, its shortcoming is that with allopatric populations it reveals phylogenetic lineages, not biological species. The increasing power of coalescent multilocus analysis leads to the situation in which nearly every geographically isolated or semi‐isolated population can be identified as a lineage and therefore raised to species rank. It leads to artificial taxonomic inflation and as a consequence creates an unnecessary burden on the conservation of biodiversity. To solve this problem, we suggest combining modern lineage delimitation techniques with the biological species concept. We discuss several explicit principles on how genetic markers can be used to detect cryptic entities that have properties of biological species (i.e. of actually or potentially reproductively isolated taxa). Using these principles we rearranged the taxonomy of the butterfly species close to Polyommatus (Agrodiaetus) ripartii. The subgenus Agrodiaetus is a model system in evolutionary research, but its taxonomy is poorly elaborated because, as a rule, most of its species are morphologically poorly differentiated. The taxon P. (A.) valiabadi has been supposed to be one of the few exceptions from this rule due to its accurately distinguishable wing pattern. We discovered that in fact traditionally recognized P. valiabadi is a triplet of cryptic species, strongly differentiated by their karyotypes and mitochondrial haplotypes.  相似文献   
4.
5.
Most chemical and, with only a few exceptions, all genetically encoded fluorimetric calcium (Ca2+) indicators (GECIs) emit green fluorescence. Many of these probes are compatible with red-emitting cell- or organelle markers. But the bulk of available fluorescent-protein constructs and transgenic animals incorporate green or yellow fluorescent protein (GFP and YFP respectively). This is, in part, not only heritage from the tendency to aggregate of early-generation red-emitting FPs, and due to their complicated photochemistry, but also resulting from the compatibility of green-fluorescent probes with standard instrumentation readily available in most laboratories and core imaging facilities. Photochemical constraints like limited water solubility and low quantum yield have contributed to the relative paucity of red-emitting Ca2+ probes compared to their green counterparts, too. The increasing use of GFP and GFP-based functional reporters, together with recent developments in optogenetics, photostimulation and super-resolution microscopies, has intensified the quest for red-emitting Ca2+ probes. In response to this demand more red-emitting chemical and FP-based Ca2+-sensitive indicators have been developed since 2009 than in the thirty years before.  相似文献   
6.
The present work introduces for the first time a nanoparticulate approach for ex vivo monitoring of acetylcholinesterase‐catalyzed hydrolysis of endogenous acetylcholine released from nerve varicosities in mice atria. Amino‐modified 20‐nm size silica nanoparticles (SNs) doped by luminescent Tb(III) complexes were applied as the nanosensors. Their sensing capacity results from the decreased intensity of Tb(III)‐centred luminescence due to the quenching effect of acetic acid derived from acetylcholinesterase‐catalyzed hydrolysis of acetylcholine. Sensitivity of the SNs in monitoring acetylcholine hydrolysis was confirmed by in vitro experiments. Isolated atria were exposed to the nanosensors for 10 min to stain cell membranes. Acetylcholine hydrolysis was monitored optically in the atria samples by measuring quenching of Tb(III)‐centred luminescence by acetic acid derived from endogenous acetylcholine due to its acetylcholinesterase‐catalyzed hydrolysis. The reliability of the sensing was demonstrated by the quenching effect of exogenous acetylcholine added to the bath solution. Additionally, no luminescence quenching occurred when the atria were pre‐treated with the acetylcholinesterase inhibitor paraoxon.  相似文献   
7.
8.
Reversible transition of the phytopathogenic gram-negative bacterium Erwinia carotovora, subsp. atroseptica, strain SCRI1043, to a dormant state was demonstrated; it was associated with a complete loss of cell ability to form colonies on the standard medium, i.e., with acquiring “non-culturability”. Entering of Erwinia cells to a nonculturable state occurred after long-term incubation (100–150 days) of the stationary-phase cell suspensions in either a fresh complete medium or in the carbon-free mineral medium or treatment with a chemical analogue of microbial anabiosis autoinducers (4 × 10−4 M of C12-alkylhydroxybenzene, AHB). However, confocal laser microscopy of the cells stained with the Live/Dead BacLight kit revealed that the majority of E. carotovora cells (90%) from long-incubated suspensions retained membrane integrity. In these suspensions, round cells of smaller size prevailed, with the envelope, containing an electron-dense outer layer and an underlying layer of lower density; the cytoplasm was coarse-granulated. Detection of “nonculturable” E. carotovora cells by quantitative real-time PCR analysis (Q-PCR) with specific primers by using standard procedures of sample preparation was shown to be inefficient. A special procedure including cell washing from the incubation medium in the absence of growth stimulation was developed, which promoted recovery of the colony-forming ability of the cells (up to 10% of the initial CFU number) and improved cell detection by Q-PCR from the number of genomic copies. The results provided further insight into the ways of long-term survival of phytopathogenic bacteria under environmental changes and carbon starvation.  相似文献   
9.
The adaptation of Acholeplasma laidlawii to conditions unfavorable for growth has been found to be accompanied by cell transformation into special morphological structures known as ultramicroforms (nanocells). The ratio of the cells of the two morphological types in the population depended on the growth conditions. Nanocells retained viability for a long time under conditions unfavorable for growth and showed resistance to stressors. Reduction in the cell size occurred due to unequal division, which involved the loss of cytoplasmic material. A. laidlawii ultramicroforms (nanocells) were able to restore proliferative activity and to revert to their initial vegetative form; they measured less than 0.2 µm and are the smallest cells known at present. Nanocells formed in vitro under exposure to abiogenic stressors may correspond to the A. laidlawii minibodies observed in infected plants upon exposure to biogenic stressors. The transformation of A. laidlawii cells into ultramicroforms was accompanied by condensation of the nucleoid, a change in the polypeptide spectrum, and a change in the availability of rRNA operons for in vitro amplification. All these changes are indicative of reorganization of the genetic and metabolic systems of mycoplasmas.__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 498–504.Original Russian Text Copyright © 2005 by Chernov, Mukhametshina, Gogolev, Abdrakhimov, Chernova.  相似文献   
10.
The adaptation of Acholeplasma laidlawii to conditions unfavorable for growth has been found to be accompanied by cell transformation into special morphological structures known as ultramicroforms (nanocells). The ratio of the cells of the two morphological types in the population depended on the growth conditions. Nanocells retained viability for a long time under conditions unfavorable for growth and showed resistance to stressors. Reduction in the cell size occurred due to unequal division, which involved the loss of cytoplasmic material. A. laidlawii ultramicroforms (nanocells) were able to restore proliferative activity and to revert to their initial vegetative form; they measured less than 0.2 microm and are the smallest cells known at present. Nanocells formed in vitro under exposure to abiogenic stressors may correspond to the A. laidlawii minibodies observed in infected plants upon exposure to biogenic stressors. The transformation of A. laidlawii cells into ultramicroforms was accompanied by condensation of the nucleoid, a change in the polypeptide spectrum, and a change in the availability of rRNA operons for in vitro amplification. All these changes are indicative of reorganization of the genetic and metabolic systems of mycoplasmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号