首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   3篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
2.
3.
4.
Capsule Greater White-fronted Geese show significant variation in body size from sampling locations throughout their circumpolar breeding range.

Aims To determine the degree of geographical variation in body size of Greater White-fronted Geese and identify factors contributing to any apparent patterns in variation.

Methods Structural measures of >3000 geese from 16 breeding areas throughout the Holarctic breeding range of the species were compared statistically.

Results Palearctic forms varied clinally, and increased in size from the smallest forms on the Kanin and Taimyr peninsulas in western Eurasia to the largest forms breeding in the Anadyr Lowlands of eastern Chukotka. Clinal variation was less apparent in the Nearctic, as both the smallest form in the Nearctic and the largest form overall (the Tule Goose) were from different breeding areas in Alaska. The Tule Goose was 25% larger than the smallest form. Birds from Greenland (A. a. flavirostris) were the second largest, although only slightly larger than geese from several North American populations. Body size was not correlated with breeding latitude but was positively correlated with temperature on the breeding grounds, breeding habitat, and migration distance. Body mass of Greater White-fronted Geese from all populations remained relatively constant during the period of wing moult. Morphological distinctness of eastern and western Palearctic forms concurs with earlier findings of complete range disjunction.

Conclusions Patterns of morphological variation in Greater White-fronted Geese across the Holarctic can be generally attributed to adaptation to variable breeding environments, migration requirements, and phylo-geographical histories.  相似文献   
5.
6.
7.
8.
Tyrosine kinases are important regulators of synaptic strength. Here, we describe a key component of the synaptic vesicle release machinery, Munc18‐1, as a phosphorylation target for neuronal Src family kinases (SFKs). Phosphomimetic Y473D mutation of a SFK phosphorylation site previously identified by brain phospho‐proteomics abolished the stimulatory effect of Munc18‐1 on SNARE complex formation (“SNARE‐templating”) and membrane fusion in vitro. Furthermore, priming but not docking of synaptic vesicles was disrupted in hippocampal munc18‐1‐null neurons expressing Munc18‐1Y473D. Synaptic transmission was temporarily restored by high‐frequency stimulation, as well as by a Munc18‐1 mutation that results in helix 12 extension, a critical conformational step in vesicle priming. On the other hand, expression of non‐phosphorylatable Munc18‐1 supported normal synaptic transmission. We propose that SFK‐dependent Munc18‐1 phosphorylation may constitute a potent, previously unknown mechanism to shut down synaptic transmission, via direct occlusion of a Synaptobrevin/VAMP2 binding groove and subsequent hindrance of conformational changes in domain 3a responsible for vesicle priming. This would strongly interfere with the essential post‐docking SNARE‐templating role of Munc18‐1, resulting in a largely abolished pool of releasable synaptic vesicles.  相似文献   
9.
This study examines the importance of avian incubation costs as determinants of clutch-size variation by performing clutch-size and brood-size manipulations in the same population of Collared Flycatchers Ficedula albicollis during the same breeding season. In 2 5 cases when three or more clutches of the same size were completed on the same day, we moved two eggs on the day after the last egg had been laid from one randomly selected clutch (C) to another (C) and moved two other eggs from this to a third clutch (C+). In 20 other cases of simultaneously completed clutches of the same size, we moved two randomly selected young from one brood to a second and from that moved two other young to a third (B, B and B+groups). Most females were weighed the day after completion of the clutch and 1–4 days before hatching of the young, and some of them also 10–14 days after hatching of the young. We measured the daily energy expenditure of females incubating manipulated clutches of 4, 6 and 8 eggs by means of the doubly-labelled water (D218O) technique and also recorded their nest attendance. Hatching success of fertilized eggs was reduced in the enlarged clutches compared with control and reduced clutches. Females expired on average 3142.6 ml CO2 and expended 78.6 kJ per day while incubating, which corresponds to a metabolic intensity of 3.3 times BMR. Daily energy expenditure increased with clutch-size due to higher costs while incubating, and not because of changed activity patterns. There were no significant differences in length of incubation, female mass or mass changes between phases for the C, C and C+groups. In both the C and B groups, enlarged broods produced significantly more fledged young than control broods, and those significantly more than reduced broods. Fledgling tarsus-length and mass did not differ significantly between treatments in either the C or B groups. There was no significant difference in breeding success between clutch and brood manipulations. In this season, incubation costs did not entail significant fitness losses, expressed either as fledgling production or female condition. Also, control females could have raised more young to fledging age than they did with no apparent costs.  相似文献   
10.
Costs of parasitism are predicted to be higher with greater parasite intensities and higher inter-parasite competition (diversity). We tested whether greater helminth intensities and diversity were associated with poorer body composition (whole-body fat, protein, mineral and true body mass) in lesser snow geese, Chen caerulescens caerulescens. As part of a larger study on nutritional ecology, 828 wintering or migrating geese were shot between January and May 1983 in 27 different date-locations (samples) during their northward migration through mid-continental North America. A large proportion of overall variation in body composition and parasite communities was among samples, so we analyzed data within each of the 27 samples, controlling for structural body size (the first principal component of 10 body size measurements), sex and the age of geese. There was no compelling evidence that cestodes, trematodes or helminth diversity were associated with variation in body composition but nematodes had several negative associations with fat reserves. However, negative associations between fat reserves and nematodes occurred most often in geese collected between March and May when nematode prevalences and intensities were relatively low. This suggests several possibilities: that the most common nematodes (Heterakis dispar and Trichostrongylus tenuis) were more virulent at this time, that infected individuals had been chronically infected and suffered cumulative nutrient deficits that lasted until late in the spring migration, or that geese became more vulnerable to the effects of parasites at this time of year, possibly because they redirected resources away from immunity toward fat storage in preparation for reproduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号