首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   35篇
  2023年   1篇
  2022年   3篇
  2021年   10篇
  2020年   4篇
  2019年   7篇
  2018年   6篇
  2017年   7篇
  2016年   10篇
  2015年   27篇
  2014年   39篇
  2013年   30篇
  2012年   29篇
  2011年   28篇
  2010年   14篇
  2009年   19篇
  2008年   21篇
  2007年   22篇
  2006年   21篇
  2005年   31篇
  2004年   27篇
  2003年   18篇
  2002年   25篇
  2001年   3篇
  2000年   8篇
  1999年   5篇
  1998年   10篇
  1997年   3篇
  1996年   9篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有470条查询结果,搜索用时 15 毫秒
1.
The distribution patterns of the leathery sea anemone, Heteractis crispa, which contains an algal endosymbiont (zooxanthellae) and anemonefish, were investigated in relation to size distribution on a shallow fringing reef (3.2 ha, 0–4 m depth) in Okinawa, Japan. Individual growth and movements were also examined. Large individuals (>1,000 cm2) inhabited reef edges up to a depth of 4 m, while small anemone (<500 cm2) inhabited shallow reefs including inner reef flats. Individuals rarely moved, and their sizes were significantly correlated with their water depths. Growth of small anemones was negatively correlated with their distance from the reef edge, suggesting that reef edges provide more prey and lower levels of physiological stress. This study suggested that deep reef edges are suitable habitats for H. crispa. Large anemones were inhabited by large Amphiprion perideraion or large Amphiprion clarkii, both of which are effective defenders against anemone predators. Anemones that settle in deep reef edges may enjoy a higher survival rate and attain a large size because of their symbiotic relationship with anemonefish. However, early settlers do not harbor anemonefish. Their mortality rate would be higher in the deep edges than in shallow edges, the complicated topography of which provides refuge.  相似文献   
2.
Melanopsins play a key role in non-visual photoreception in mammals. Their close phylogenetic relationship to the photopigments in invertebrate visual cells suggests they have evolved to acquire molecular characteristics that are more suited for their non-visual functions. Here we set out to identify such characteristics by comparing the molecular properties of mammalian melanopsin to those of invertebrate melanopsin and visual pigment. Our data show that the Schiff base linking the chromophore retinal to the protein is more susceptive to spontaneous cleavage in mammalian melanopsins. We also find this stability is highly diversified between mammalian species, being particularly unstable for human melanopsin. Through mutagenesis analyses, we find that this diversified stability is mainly due to parallel amino acid substitutions in extracellular regions. We propose that the different stability of the retinal attachment in melanopsins may contribute to functional tuning of non-visual photoreception in mammals.  相似文献   
3.
Summary The nucleotide sequences of cloned cDNAs were used to determine the primary structures of the precursors of vasotocin (sVT) and isotocin (sIT) from the hypothalamus of the chum salmon,Oncorhynchus keta. Two different cDNAs were obtained for each of sVT and sIT precursors (sVT-I and sVT-II; sIT-I and sIT-II). Both sVT and sIT precursors were found to contain a signal peptide and hormone that is connected to a neurophysin by a Gly-Lys-Arg sequence. Northern and Southern blot analyses showed that the sVT and sIT genes are expressed by the same chum salmon hypothalamus, but not by the liver and kidney. Microheterogeneity was found in the nucleotide and amino acid sequences of sVT precursors between our results and the previously reported data (Heierhorst et al. 1990). The conspicuous difference is the occurrence of a stop codon in the middle of sVT-II cDNA. The carboxyl termini of both sVT and sIT neurophysins are about 30 amino acids longer than neurophysins of toad and mammalian neurohypophysial hormone precursors. Although these extended regions do not contain a glycosylation site, they show striking similarity with the glycopeptide moiety (copeptin) of toad vasotocin and mammalian vasopressin precursors. The central portion of the neurophysins shows highest homology among corresponding regions of sVT and sIT precursors. Moreover, calculation of nucleotide substitution rates suggests that a recent gene conversion may have occurred which encompasses the exon that encodes the central segment of the sVT and sIT precursors. A possible pathway for the evolution of precursor molecules of neurohypophysial hormones is discussed.Abbreviations AVP vasopressin - C carboxyl - h human - IT isotocin - MT mesotocin - N amino - OXT oxytocin - S chum salmon - SDS sodium dodecyl sulfate - t toad - VT vasotocin  相似文献   
4.
The vascular basement membrane is involved in the regulation of endothelial cell differentiation. The accumulation of advanced glycosylation endproducts (AGEs) has been demonstrated on these basement membranes in patients with diabetes. We examined the effect of AGEs on endothelial cell behavior on reconstituted basement membrane, Matrigel. Human umbilical vein-derived endothelial cells (HUVECs) stopped proliferating and differentiated into capillary-like tube-shaped structures on Matrigel. Laminin antibody partially blocked this process. HUVECs cultured on glycosylated Matrigel, however, proliferated and formed a monolayer without tube formation. The inclusion of aminoguanidine, an inhibitor of AGE formation, during the glycosylation of Matrigel restored HUVEC differentiation. Although the laminin adsorbed onto the plastic culture wells promoted HUVEC attachment and spreading, glycosylated laminin reduced HUVEC attachment by 50% and abolished cellular spreading. These effects were restored by aminoguanidine. HUVEC attachment to glycosylated laminin was further reduced by AGE-modified albumin, poly I, acetylated low-density lipoprotein, or maleylated albumin, ligands for a scavenger receptor. Coating the culture dishes with the laminin peptides RGD, YIGSR, and SIKVAV supported the attachment of HUVECs that was unaffected by glycosylation. Results suggest that AGE accumulation on the basement membranes inhibits endothelial cell differentiation by impairing the normal interactions of endothelial cell receptors with their specific matrix ligands. This process may be involved in diabetic angiopathy.  相似文献   
5.
The polypeptide encoded by the partial fragment of cDNA of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), PALcDNAl (Osakabe et al., 1995, Plant Sci. 105: 217–226), isolated from Populus kitakamiensis (P. sieboldii x P. grandidentata), was expressed in Escherichia coli cells. The polypeptide was purified and an antiserum raised against it. The antiserum recognized a protein of 77 kDa on nitrocellulose blots after sodium dodecyl sulfate-poly-acrylamide gel electrophoresis of total protein and the partially purified PAL protein from P. kitakamiensis. Moreover,the antiserum recognized a protein on the blot after non-denaturing polyacrylamide gel electrophoresis of P. kitakamiensis proteins and this protein had PAL activity. Furthermore, the antibody inhibited PAL activity of extracts from stem tissues. These results showed that the antiserum against the partial PAL peptide recognized only the PAL subunits in extracts of P. kitakamiensis. Immunolocalization studies of P. kitakamiensis tissues revealed that the PAL protein was specifically localized in the xylem and the phloem fibers and no immunogold signal was found in the epidermis, the cortex, the pith, or the cambium of either stems or leaves.Abbreviations IgG immunoglobulin G - IPTG isopropylthio--d-galactoside - PAL phenylalanine ammonia-lyase The authors thank Dr. Kunio Hata of Nippon Paper Industries Co., Ltd. (Japan) for supplying P. kitakamiensis. This work was supported in part by a grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (No. 07406008).  相似文献   
6.
Expression of β-actin and β-tubulin mRNA was examined in androgen-sensitive motoneurons of the spinal nucleus of the bulbocavernosus (SNB) in adult male rats by in situ hybridization histochemistry using complementary DNAs encoding chick β-actin and mouse β-tubulin, respectively. Both hybridizable β-actin and βtubulin mRNAs were localized in the somata and proximal dendrites of SNB motoneurons. Removal of androgen by castration significantly reduced the expression levels of both β-actin and β-tubulin mRNAs in the SNB motoneurons, whereas the changes were prevented by testosterone treatment. In contrast, castration or testosterone treatment induced little or no change in the expression levels of these mRNAs in the much less androgen-sensitive motoneurons of the retrodorsolateral nucleus (RDLN). These results suggest that androgen regulates the expression of β-actin and β-tubulin genes in the SNB motoneurons and may provide evidence for the molecular mechanisms of hormonally induced neuronal plasticity in the SNB motoneurons.  相似文献   
7.
A genomic library was prepared from Populus kitakamiensis and screened with the cDNA for an anionic peroxidase from P. kitakamiensis. One genomic clone was isolated that contained two tandemly oriented genes for anionic peroxidases, prxA3a and prxA4a. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, namely, GT and AG, at their 5 and 3 ends, respectively. The prxA3a and prxA4a genes encoded 347 and 343 amino acid residues, respectively, including putative signal sequences at the amino-termini. Putative promoters and polyadenylation signals were found in the flanking regions of both genes. The sequence of the coding region of prxA3a was completely identical to that of the cDNA clone pA3, whereas the sequence of the coding region of prxA4a was only 73% identical to that of the cDNA clone pA3. Northern blot analysis showed that the patterns of expression of the mRNAs that corresponded to prxA3a and prxA4a differed in stems of P. kitakamiensis.  相似文献   
8.
9.
Given their sessile nature, land plants must use various mechanisms to manage dehydration under water‐deficit conditions. Osmostress‐induced activation of the SNF1‐related protein kinase 2 (SnRK2) family elicits physiological responses such as stomatal closure to protect plants during drought conditions. With the plant hormone ABA receptors [PYR (pyrabactin resistance)/PYL (pyrabactin resistance‐like)/RCAR (regulatory component of ABA receptors) proteins] and group A protein phosphatases, subclass III SnRK2 also constitutes a core signaling module for ABA, and osmostress triggers ABA accumulation. How SnRK2 is activated through ABA has been clarified, although its activation through osmostress remains unclear. Here, we show that Arabidopsis ABA and abiotic stress‐responsive Raf‐like kinases (AtARKs) of the B3 clade of the mitogen‐activated kinase kinase kinase (MAPKKK) family are crucial in SnRK2‐mediated osmostress responses. Disruption of AtARKs in Arabidopsis results in increased water loss from detached leaves because of impaired stomatal closure in response to osmostress. Our findings obtained in vitro and in planta have shown that AtARKs interact physically with SRK2E, a core factor for stomatal closure in response to drought. Furthermore, we show that AtARK phosphorylates S171 and S175 in the activation loop of SRK2E in vitro and that Atark mutants have defects in osmostress‐induced subclass III SnRK2 activity. Our findings identify a specific type of B3‐MAPKKKs as upstream kinases of subclass III SnRK2 in Arabidopsis. Taken together with earlier reports that ARK is an upstream kinase of SnRK2 in moss, an existing member of a basal land plant lineage, we propose that ARK/SnRK2 module is evolutionarily conserved across 400 million years of land plant evolution for conferring protection against drought.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号