首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
排序方式: 共有7条查询结果,搜索用时 93 毫秒
1
1.
Second harmonic generation (SHG) multiphoton imaging can visualize fibrillar collagen in tissues. SHG has previously shown that fibrillar collagen is altered in various types of cancer. In the present study, in vivo high resolution SHG multi‐photon tomography in living mice was used to study the relationship between cancer cells and intratumor collagen fibrils. Using green fluorescent protein (GFP) to visualize cancer cells and SHG to image collagen, we demonstrated that collagen fibrils provide a scaffold for cancer cells to align themselves and acquire optimal shape. These results suggest a new paradigm for a stromal element of tumors: their role in maintaining anchorage and shape of cancer cells that may enable them to proliferate. J. Cell. Biochem. 114: 99–102, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
2.
We have previously reported that nestin‐expressing hair follicle stem cells can differentiate into neurons, Schwann cells, and other cell types. In the present study, vibrissa hair follicles, including their sensory nerve stump, were excised from transgenic mice in which the nestin promoter drives green fluorescent protein (ND‐GFP mice), and were placed in 3D histoculture supported by Gelfoam®. β‐III tubulin‐positive fibers, consisting of ND‐GFP‐expressing cells, extended up to 500 µm from the whisker nerve stump in histoculture. The growing fibers had growth cones on their tips expressing F‐actin. These findings indicate that β‐III tubulin‐positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in ND‐GFP cells which appeared to play a major role in its elongation and interaction with other nerves in 3D culture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. The results of the present report suggest a major function of the nestin‐expressing stem cells in the hair follicle is for growth of the follicle sensory nerve. J. Cell. Biochem. 114: 1674–1684, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
3.
We have previously demonstrated that nestin-expressing multipotent hair follicle stem cells are located above the hair follicle bulge and can differentiate into neurons and other cell types in vitro. The nestin-expressing hair follicle stem cells promoted the recovery of pre-existing axons when they were transplanted to the severed sciatic nerve or injured spinal cord. We have also previously demonstrated that the whisker hair follicle contains nestin-expressing stem cells in the dermal papilla (DP) as well as in the bulge area (BA), but that their origin is in the BA. In the present study, we established the technique of long-term Gelfoam? histoculture of whiskers isolated from transgenic mice in which nestin drives green fluorescent protein (ND-GFP). Confocal imaging was used to monitor ND-GFP-expressing stem cells trafficking in real time between the BA and DP to determine the fate of the stem cells. It was observed over a 2-week period that the stem cells trafficked from the BA toward the DP area and extensively grew out onto Gelfoam? forming nerve-like structures. This new method of long-term histoculture of whiskers from ND-GFP mice will enable the extensive study of the behavior of nestin-expressing multipotent stem cells of the hair follicle.  相似文献   
4.
Hair-follicle-associated pluripotent (HAP) stem cells can differentiate into many cell types, including neurons and heart muscle cells, and have been shown to repair peripheral nerves and the spinal cord in mice. HAP stem cells can be obtained from each individual patient for regenerative medicine which overcomes problems with immune rejection. Previously, we have demonstrated that genetically-encoded protein markers such as GFP in transgenic mice can be used to visualize HAP stem cells in vivo by multiphoton tomography. Detection and visualization of stem cells in vivo without exogenous labels such as GFP would be important for human application. In the present report, we demonstrate label-free visualization of hair follicle stem cells in mouse whiskers by multiphoton tomography due to the intrinsic fluorophores such as NAD(P)H/flavins. We compared multiphoton tomography of GFP-labeled HAP stem cells and unlabeled stem cells in isolated mouse whiskers. We show that observation of HAP stem cells by label-free multiphoton tomography is comparable to detection using GFP-labeled stem cells. The results described here have important implications for detection and isolation of human HAP stem cells for regenerative medicine.  相似文献   
5.
Two‐photon imaging is a noninvasive imaging technique with increasing importance in the biological and medical fields since it allows intratissue cell imaging with high resolution. We demonstrate the feasibility of using a single 2‐photon instrument to evaluate the cornea, the crystalline lens and the retina based on their autofluorescence (AF). Image acquisition was performed using a custom‐built 2‐photon microscope for 5‐dimensional microscopy with a near infrared broadband sub‐15 femtosecond laser centered at 800 nanometers. Signals were detected using a spectral photomultiplier tube. The spectral ranges for the analysis of each tissue/layer AF were determined based on the spectra of each tissue as well as of pure endogenous fluorophores. The cornea, lens and retina are characterized at multiple depths with subcellular resolution based on their morphology and AF lifetime. Additionally, the AF lifetime of NAD(P)H was used to assess the metabolic activity of the cornea epithelium, endothelium and keratocytes. The feasibility to evaluate the metabolic activity of lens epithelial cells was also demonstrated, which may be used to further investigate the pathogenesis of cataracts. The results illustrate the potential of multimodal multiphoton imaging as a novel ophthalmologic technique as well as its potential as a diagnostic tool.   相似文献   
6.
7.
Nestin-expressing pluripotent stem cells have been found both in the bulge area (BA) as well as the dermal papilla (DP). Nestin-expressing stem cells of both the BA and DP have been previously shown to be able to form neurons and other non-follicle cell types. The nestin-expressing stem cells from the DP have been termed skin precursor or SKP cells. Both nestin-expressing DP and BA cells have been previously shown to effect repair of the injured spinal cord and peripheral nerve, with the BA being the greater and more constant source of the stem cells. The BA contains nestin-expressing stem cells throughout the hair cycle, whereas nestin-expressing dermal papillae stem cells were found in early and mid-anagen only. Our previous studies have shown that the nestin-expressing stem cells in the BA and DP have similar morphological features. The cells from both regions have a small body diameter of approximately 7 μm with long extrusions, as shown by 2-photon imaging. In the present study, using 2-photon imaging of whisker follicles from transgenic mice expressing nestin-driven green fluorescent protein (ND-GFP), we demonstrate that the BA is the source of the nestin-expressing stem cells of the hair follicle. The nestin-expressing stem cells migrate from the BA to the DP as well as into the surrounding skin tissues including the epidermis, and during wound healing, suggesting that the BA may be the source of the stem cells of the skin itself.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号