首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   3篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   4篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2001年   1篇
  1999年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
The ability of herpes simplex virus type 1 thymidine kinase (HSV-tk)-expressing cells incubated with ganciclovir (GCV) to induce cytotoxicity in neighboring HSV-tk-negative (bystander) cells has been well documented. Although it has been suggested that this bystander cell killing occurs via the transfer of phosphorylated GCV, the mechanism(s) of this bystander effect and the importance of gap junctions for the effect of prodrug/suicide gene therapy in primary human glioblastoma cells remains elusive. Surgical biopsies of malignant gliomas were used to establish explant primary cultures. Proliferating tumor cells were characterized immunohistochemically and found to express glial tumor markers including nestin, vimentin, glial fibrillary acidic protein (GFAP), S-100, and gap junction protein connexin 43 (Cx43). Western blot analysis revealed the presence of phosphorylated isoforms of Cx43 and Calcein/DiI fluorescent dye transfer showed evidence of efficient gap junction communication (GJC). In order to study the effect(s) of prodrug/suicide gene therapy in these cultures, human glioblastoma cell cultures were transfected with the HSVtk gene for transient or stable expression. Ganciclovir treatment of these cultures led to >90% of cells dead within 1 week. Eradication of cells could be inhibited by the addition of alpha-glycyrrhetinic acid (AGA), a GJC inhibitor. In parallel experiments, AGA decreased the immunodetection of phosphorylated Cx43 as analyzed by Western blot and inhibited fluorescent dye transfer. In conclusion, these observations are consistent with GJC as the mediator of the bystander effect in primary cultures of human glioblastoma cells by the transfer of phosphorylated GCV from HSVtk gene transfected cells to untransfected ones.  相似文献   
2.
新疆苦豆子根瘤菌的数值分类研究   总被引:8,自引:0,他引:8  
苦豆子(Sophora alopecuroides)对于干旱荒漠地区的畜牧业发展有着非常重要的意义,其生长特性与根瘤菌有密切关系。我们对分离自新疆苦豆子根瘤的67株根瘤菌及36个模式菌株进行了118项表型性状的测定,包括唯一碳源利用、唯一氮源利用、对抗生素和染料的抗性、耐盐性、初始pH值生长范围、生长温度范围及石蕊牛奶反应、氧化酶、过氧化氢酶和脲酶。对测定结果用聚类分析方法进行了分析,获得数值分类树状图。结果表明:新疆苦豆子根瘤菌在碳氮源利用、抗生素敏感性以及对染料的抗性程度等方面存在着差异。新疆苦豆子根瘤菌能耐受低温,并具有较强的耐盐、碱能力,所有供试菌株均能在初始pH值为9-12的YMA培养基上生长,92.5%的菌株能耐受3.0%的NaCl,91.0%的菌株能耐受4.0%的NaCl,有18株菌甚至能耐受5.0%和6.0%的NaCl。聚类结果表明, 在84.8%的相似性水平上,67个供试菌株构成了4个新的表观群,第Ⅰ、Ⅱ、Ⅲ、Ⅳ类群分别有21、7、4、3个菌株,中心菌株分别为NWBC152、NWTKX101、NWYJS12、NWLP112。此外,数值分类结果还表明,苦豆子根瘤菌与模式菌株的相似性较低,它们所形成的4个独立群可能有新种出现。  相似文献   
3.
The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano‐ and micro‐technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell‐matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano‐ and micro‐technologies. In addition, current hydrogel‐based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues.  相似文献   
4.
5.
6.
7.
Several mRNA-binding proteins, including hnRNP A1 and HuR, contain bidirectional transport signals that mediate both their nuclear import and export. Previously, Transportin 1 (Trn1) was identified as a mediator of hnRNP A1 import, whereas the closely related protein Transportin 2 (Trn2) was shown to interact with HuR. Here we have investigated the subfamily of transportins that consists of Trn1 (or Kap beta2A) and two alternatively spliced Trn2 isoforms (Trn2a and Trn2b), also called Trn2 and Kap beta2B. The sequence differences among these proteins could alter either their cargo specificity or their response to RanGTP and thus their function as import or export receptors. Using in vitro binding assays, we show that hnRNP A1 preferentially binds Trn1 and Trn2b versus Trn2a. HuR interacts with all three transportins, as well as weakly with Imp beta. The hnRNP A1 and HuR shuttling domains, called M9 and HNS, respectively, are sufficient for these interactions. Despite small differences in the binding of HuR and hnRNP A1 to the three transportins, in vitro interaction studies performed in the presence and absence of RanQ69LGTP indicate that all three transportins most likely act as import factors for HuR and hnRNP A1. In digitonin-permeabilized HeLa cells, both M9 and HNS peptides compete for the import of recombinant hnRNP A1 and HuR, indicating that HuR and hnRNP A1 import pathways are at least partially overlapping. Possible nucleocytoplasmic shuttling mechanisms for hnRNP A1 and HuR are discussed.  相似文献   
8.
9.
10.
Bioenergy crop cultivation on former peat extraction areas is a potential after‐use option that provides a source of renewable energy while mitigating climate change through enhanced carbon (C) sequestration. This study investigated the full C and greenhouse gas (GHG) balances of fertilized (RCG‐F) and nonfertilized (RCG‐C) reed canary grass (RCG; Phalaris arundinacea) cultivation compared to bare peat (BP) soil within an abandoned peat extraction area in western Estonia during a dry year. Vegetation sampling, static chamber and lysimeter measurements were carried out to estimate above‐ and belowground biomass production and allocation, fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in cultivated strips and drainage ditches as well as the dissolved organic carbon (DOC) export, respectively. Heterotrophic respiration was determined from vegetation‐free trenched plots. Fertilization increased the above‐ to belowground biomass production ratio and the autotrophic to heterotrophic respiration ratio. The full C balance (incl. CO2, CH4 and DOC fluxes from strips and ditches) was 96, 215 and 180 g C m?2 yr?1 in RCG‐F, RCG‐C and BP, respectively, suggesting that all treatments acted as C sources during the dry year. The C balance was driven by variations in the net CO2 exchange, whereas the combined contribution of CH4 and DOC fluxes was <5%. The GHG balances were 3.6, 7.9 and 6.6 t CO2 eq ha?1 yr?1 in RCG‐F, RCG‐C and BP, respectively. The CO2 exchange was also the dominant component of the GHG balance, while the contributions of CH4 and N2O were <1% and 1–6%, respectively. Overall, this study suggests that maximizing plant growth and the associated CO2 uptake through adequate water and nutrient supply is a key prerequisite for ensuring sustainable high yields and climate benefits in RCG cultivations established on organic soils following drainage and peat extraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号