首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   637篇
  免费   37篇
  国内免费   1篇
  2024年   2篇
  2023年   7篇
  2022年   17篇
  2021年   25篇
  2020年   34篇
  2019年   58篇
  2018年   40篇
  2017年   28篇
  2016年   29篇
  2015年   21篇
  2014年   48篇
  2013年   63篇
  2012年   52篇
  2011年   48篇
  2010年   20篇
  2009年   25篇
  2008年   26篇
  2007年   31篇
  2006年   24篇
  2005年   10篇
  2004年   12篇
  2003年   17篇
  2002年   13篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   4篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
  1981年   2篇
  1979年   2篇
排序方式: 共有675条查询结果,搜索用时 234 毫秒
1.
2.
For several decades the physical mechanism underlying discrete dark noise of photoreceptors in the eye has remained highly controversial and poorly understood. It is known that the Arrhenius equation, which is based on the Boltzmann distribution for thermal activation, can model only a part (e.g. half of the activation energy) of the retinal dark noise experimentally observed for vertebrate rod and cone pigments. Using the Hinshelwood distribution instead of the Boltzmann distribution in the Arrhenius equation has been proposed as a solution to the problem. Here, we show that the using the Hinshelwood distribution does not solve the problem completely. As the discrete components of noise are indistinguishable in shape and duration from those produced by real photon induced photo-isomerization, the retinal discrete dark noise is most likely due to ‘internal photons’ inside cells and not due to thermal activation of visual pigments. Indeed, all living cells exhibit spontaneous ultraweak photon emission (UPE), mainly in the optical wavelength range, i.e., 350–700 nm. We show here that the retinal discrete dark noise has a similar rate as UPE and therefore dark noise is most likely due to spontaneous cellular UPE and not due to thermal activation.  相似文献   
3.
Journal of Plant Growth Regulation - Salinity stress is one of the most important global problems that afflicts and limits the growth and development of turfgrass in arid and semi-arid areas....  相似文献   
4.
5.

Non-albicans Candida species and other rare yeasts have emerged as major opportunistic pathogens in fungal infections. Identification of opportunistic yeasts in developing countries is mainly performed by phenotypic assay, which are time-consuming and prone to errors. The aim of the present study was to evaluate PCR-RFLP as a routinely used identification technique for the most clinically important Candida species in Iran and make a comparison with a novel multiplex PCR, called 21-plex PCR. One hundred and seventy-three yeast isolates from clinical sources were selected and identified with sequence analysis of the D1/D2 domains of rDNA (LSU rDNA) sequencing as the gold standard method. The results were compared with those obtained by PCR-RFLP using MspI restriction enzyme and the 21-plex PCR. PCR-RFLP correctly identified 93.4% of common pathogenic Candida species (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and P. kudriavsevii (=?C. krusei)) and was able to identify 45.5% of isolates of the uncommon yeast species compared to the D1/D2 rDNA sequencing. Compared with PCR-RFLP, all common Candida species and 72.7% of uncommon yeast species were correctly identified by the 21-plex PCR. The application of the 21-plex PCR assay as a non-sequence-based molecular method for the identification of common and rare yeasts can reduce turnaround time and costs for the identification of clinically important yeasts and can be applied in resource-limited settings.

  相似文献   
6.
Chemical functionalization of a zigzag carbon nanotube (CNT) with 1, 3-cyclohexadiene (CHD), previously reported by experimentalists, has been investigated in the present study using density functional theory in terms of energetic, geometric, and electronic properties. Then, the thermodynamic and kinetic feasibility of H2 dissociation on the pristine and functionalized CNTs have been compared. The dissociation energy of the H2 molecule on the pristine and functionalized CNT has been calculated to be about ?1.00 and ?1.55 eV, while the barrier energy is found to be about 3.70 and 3.51 eV, respectively. Therefore, H2 dissociation is thermodynamically more favorable on the CNT-CHD system than on the pristine tube, while the favorability of the dissociation on the pristine tube is higher in term of kinetics.  相似文献   
7.
We have studied the adsorption of atomic and molecular fluorines on a BC3 nanotube by using density functional calculations. It was found that the adsorption of atomic fluorine on a C atom of the tube surface is energetically more favorable than that on a B atom by about 0.97 eV. The adsorption of atomic fluorine on both C and B atoms significantly affects the electronic properties of the BC3 tube. The HOMO-LUMO energy gap is considerably reduced from 2.37 to 1.50 and 1.14 eV upon atomic F adsorption on B and C atoms, respectively. Molecular fluorine energetically tends to be dissociated on B atoms of the tube surface. The associative and dissociative adsorption energies of F2 were calculated to be about ?0.42 and ?4.79 eV, respectively. Electron emission density from BC3 nanotube surface will be increased upon both atomic and molecular fluorine adsorptions due to work function decrement.  相似文献   
8.

Background

The presence of monocyte-macrophage lineage cells in rejecting kidney transplants is associated with worse graft outcome. At present, it is still unclear how the monocyte-macrophage related responses develop after transplantation. Here, we studied the dynamics, phenotypic and functional characteristics of circulating monocytes during the first 6 months after transplantation and aimed to establish the differences between kidney transplant recipients and healthy individuals.

Methods

Phenotype, activation status and cytokine production capacity of classical (CD14++CD16−), intermediate (CD14++CD16+) and non-classical (CD14+CD16++), monocytes were determined by flow cytometry in a cohort of 33 healthy individuals, 30 renal transplant recipients at transplantation, 19 recipients at 3 months and 16 recipients at 6 months after transplantation using a cross-sectional approach.

Results

The percentage of both CD16+ monocyte subsets was significantly increased in transplant recipients compared to healthy individuals, indicative of triggered innate immunity (p≤0.039). Enhanced production capacity of tumor necrosis factor-α, interferon-γ and interleukin-1β was observed by monocytes at transplantation compared to healthy individuals. Remarkably, three months post-transplant, in presence of potent immunosuppressive drugs and despite improved kidney function, interferon-γ, tumor necrosis factor-α and interleukin-10 production capacity still remained significantly increased.

Conclusion

Our data demonstrate a skewed balance towards pro-inflammatory CD16+ monocytes that is present at the time of transplantation and retained for at least 6 months after transplantation. This shift could be one of the important drivers of early post-transplant cellular immunity.  相似文献   
9.
Ahmadi  Tayebeh  Shabani  Leila  Sabzalian  Mohammad R. 《Protoplasma》2020,257(4):1231-1242

The popularity of lemon balm in conventional medicine is suggested by the existence of two groups of compounds, namely essential oil and phenylpropanoids pathway derivatives. One of the promising approaches to improve tolerance to drought stress induced oxidative damage in seedlings grown in greenhouses and plant growth chambers is replacing the traditional and high-cost light technologies by recently developed light emitting diodes (LED). In this experiment, we analyzed the role of various LED lights including red (R), blue (B), red (70%) + blue (30%) (RB), and white (W) as well as normal greenhouse light (as control) to stimulate defense mechanisms against drought stress in two genotypes of Melissa officinalis L. The present study demonstrates that pre-treatment with LEDs with high-intensity output for 4 weeks alleviated harmful effects of drought stress in the two genotypes. Under drought stress, RB LED pre-treated plantlets of the two genotypes exhibited the highest relative growth index of shoot and root and total phenolic and anthocyanin content compared to those irradiated with other LEDs and greenhouse lights. The highest amount of malondialdehyde level was detected in R LED exposed plants. In response to drought, LED-exposed plants especially RB light-irradiated plants of the two genotypes maintained significantly higher antioxidant and phenylalanine ammonia-lyase (PAL) enzyme activities and higher expression level of the PAL1 and 4CL-1 genes compared to those irradiated with greenhouse light. We concluded that RB LED light provides a better growth condition and resistance to drought stress for the two genotypes of lemon balm by the highest antioxidant activity and the least amount of damage to the cell membranes. Our data suggest that LED light pre-treatments as moderate stress activate antioxidant systems, enhance the scavenging of ROS and induce drought stress tolerance in the two genotypes of lemon balm plants.

  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号