首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   39篇
  2022年   4篇
  2021年   5篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2015年   4篇
  2014年   5篇
  2013年   8篇
  2012年   8篇
  2011年   6篇
  2010年   10篇
  2008年   15篇
  2007年   17篇
  2006年   12篇
  2005年   18篇
  2004年   23篇
  2003年   26篇
  2002年   22篇
  2001年   32篇
  2000年   13篇
  1999年   18篇
  1998年   5篇
  1997年   10篇
  1996年   2篇
  1993年   3篇
  1992年   13篇
  1991年   7篇
  1990年   11篇
  1989年   6篇
  1988年   8篇
  1987年   4篇
  1986年   7篇
  1985年   9篇
  1984年   3篇
  1983年   3篇
  1979年   2篇
  1978年   3篇
  1975年   1篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   3篇
  1966年   1篇
  1965年   1篇
  1925年   1篇
  1923年   2篇
  1922年   1篇
  1920年   3篇
排序方式: 共有382条查询结果,搜索用时 15 毫秒
1.
Growing cultures of Methanobacterium thermoautotrophicum were supplemented with [U-14C]adenosine or [1-14C]adenosine. 7,8-Didemethyl-8-hydroxy-5-deazariboflavin (factor F0) and 7-methylpterin were isolated from the culture medium. Hydrolysis of cellular RNA yielded purine and pyrimidine nucleotides. The ribose side chain of proffered adenosine is efficiently incorporated into cellular adenosine and guanosine nucleotide pools but not into pyrimidine nucleotides. Thus, M. thermoautotrophicum can utilize exogenous adenosine by direct phosphorylation without hydrolysis of the glycosidic bond, and AMP can be efficiently converted to GMP. Factor F0 and 7-methylpterin had approximately the same specific activities as the purine nucleotides. It follows that the ribityl side chain of factor F0 is derived from the ribose side chain of a nucleotide precursor by reduction. The pyrazine ring of methanopterin is formed by ring expansion involving the ribose side chain of the precursor, GTP.Abbreviations Factor F0 8-hydroxy-6,7-didemethyl-5-deazariboflavin - APRT adenine phosphoribosyltransferase - GPRT guanine phosphoribosyltransferase - PRPP phosphoribosylpyrophosphate - HPLC high performance liquid chromatography  相似文献   
2.
Megasphaera elsdenii and Desulfovibrio vulgaris apoflavodoxins have been reconstituted with riboflavin 3',5'-bisphosphate. Several biochemical and biophysical properties of the complexes have been investigated and the results are compared with the properties of the native proteins. The dissociation constant of the modified complex of M. elsdenii flavodoxin is increased by a factor of about 23 by comparison with that of the native protein. The rate constant for the formation of the complex of M. elsdenii flavodoxin is about 26 times lower than that for the native protein. The redox potential of the transition between the oxidized and semiquinone state is similar to that of the native protein. On the other hand, the redox potential of the semiquinone-hydroquinone transition is about 20 mV more negative than that of the native protein. Absorbance and circular dichroic spectra of the protein-bound artificial prosthetic group and the protein-bound natural prosthetic group are very similar. In both the oxidized and in the fully reduced state only minor differences in interaction between the isoalloxazine ring and the apoprotein for the two flavin derivatives are found by 13C and 15N NMR. 31P-NMR studies show that the 5'-phosphate group of the two flavin derivatives is bound in the same way and that it is dianionic in the complex. In contrast, the 3'-phosphate group in riboflavin 3',5'-bisphosphate is monoanionic or even neutral when bound to the protein. The 3'-phosphate group is also close to or on the surface of the protein. Desulfovibrio vulgaris apoflavodoxin has an affinity for riboflavin 3',5'-bisphosphate which is 10 times higher as compared to Megasphaera elsdenii apoflavodoxin (Ka = 10(8) M-1). Also the association rate constant of Desulfovibrio vulgaris apoprotein and riboflavin 3'5'-bisphosphate is found to be 10 times faster than for the Megasphaera elsdenii flavodoxin reaction. The dissociation behaviour of native Desulfovibrio vulgaris flavodoxin measured under identical conditions as for the riboflavin 3',5'-bisphosphate analog gives a value (Kd approximately equal to 0.2 nM) which is considerably lower than reported earlier [Dubourdieu, M., MacKnight, M. L. & Tollin, G. (1974) Biochem. Biophys. Res. Commun. 60, 649-655]. The results are discussed in the light of the existing crystallographic data of flavodoxins and the recently proposed theory on the regulation of the redox potential in flavoproteins [Moonen, C. T. W., Vervoort, J. & Müller, F. (1984) in Flavins and flavoproteins, pp. 493-496, Walter de Gruyter, Berlin].  相似文献   
3.
The xylene ring of riboflavin originates by dismutation of the precursor, 6,7-dimethyl-8-ribityllumazine. The formation of the latter compound requires a 4-carbon unit as the precursor of carbon atoms 6 alpha, 6, 7, and 7 alpha of the pyrazine ring. The formation of riboflavin from GTP and ribose phosphate by cell extract from Candida guilliermondii has been observed by Logvinenko et al. (Logvinenko, E. M., Shavlovsky, G. M., Zakal'sky, A. E., and Zakhodylo, I. V. (1982) Biokhimiya 47, 931-936). We have studied this enzyme reaction in closer detail using carbohydrate phosphates as substrates and synthetic 5-amino-6-ribitylamino-2,4-(1H,3H)-pyrimidinedione or its 5'-phosphate as cosubstrates. Several pentose phosphates and pentulose phosphates can serve as substrate for the formation of riboflavin with similar efficiency. The reaction requires Mg2+. Various samples of ribulose phosphate labeled with 14C or 13C have been prepared and used as enzyme substrates. Radioactivity was efficiently incorporated into riboflavin from [1-14C]ribulose phosphate, [3,5-14C]ribulose phosphate, and [5-14C]ribulose phosphate, but not from [4-14C]ribulose phosphate. Label from [1-13C]ribose 5-phosphate was incorporated into C6 and C8 alpha of riboflavin. [2,3,5-13C]Ribose 5-phosphate yielded riboflavin containing two contiguously labeled segments of three carbon atoms, namely 5a, 9a, 9 and 8, 7, 7 alpha. 5-Amino-6-[1'-14C] ribitylamino-2,4 (1H,3H)-pyrimidinedione transferred radioactivity exclusively to the ribityl side chain of riboflavin in the enzymatic reaction. It follows that the 4-carbon unit used for the biosynthesis of 6,7-dimethyl-8-ribityllumazine consists of the pentose carbon atoms 1, 2, 3, and 5 in agreement with earlier in vivo studies.  相似文献   
4.
The experimental modulation of tight junctions (TJ) was studied in the human adenocarcinoma cell line HT 29 by freeze-fracture electron microscopy. The cell line has virtually no TJ when grown in culture. TJ could be induced by mild treatment with a variety of endopeptidases (trypsin, chymotrypsin, collagenase, elastase, plasmin, thrombin, papain, and pronase). Pronase induced the formation of TJ at low (but not at high) concentrations. All exopeptidases studied were unable to induce the formation of TJ. At 0 degree C the trypsin-induced formation of TJ was greatly slowed down although not entirely inhibited. However, when cells were briefly treated with trypsin at 0 degree C and subsequently transferred to 37 degrees C in the presence of protease inhibitors, TJ were rapidly assembled. Thus an induction phase at low temperature and an assembly phase at high temperature could be experimentally separated. When cells were briefly trypsinized at 0 degrees and subsequently kept at 0 degree C without trypsin for several hours, TJ still formed abundantly upon incubation at 37 degrees C. It appears therefore that the effect produced by the protease is retained for long periods in the cold.  相似文献   
5.
We studied the incorporation of [1-13C]ribose and [1,3-13C2]glycerol into the riboflavin precursor 6,7-dimethyl-8-ribityllumazine, using a riboflavin-deficient mutant of Bacillus subtilis. The formation of the pyrazine ring requires the addition of a four-carbon moiety to a pyrimidine precursor. The results show that C-6 alpha, C-6, C-7, and C-7 alpha of 6,7-dimethyl-8-ribityllumazine were biosynthetically equivalent to C-1, C-2, C-3, and C-5 of a pentose phosphate. C-4 of the pentose precursor was lost through an intramolecular skeletal rearrangement. Thus, the last steps in the biosynthesis of 6,7-dimethyl-8-ribityllumazine apparently involve the same mechanism in bacteria as in fungi.  相似文献   
6.
7.
8.
Rabbit retinas were fixed for electron microscopy immediately after removing the eye and after incubations in a control medium and in three different deprivation media that were identical with the control except for the omission of glucose, oxygen, or both. A systematic comparison was made of the electron microscopic appearance of the different retinas with particular attention to four regions: rod inner segments, rod synapses, bipolar cell bodies, and ganglion cell myelinated axons. Retinas fixed after 1 hour of incubation in the control medium appeared virtually identical with those fixed immediately after ocular removal. Retinas deprived of oxygen and glucose for only 3 minutes showed generalized swelling of mitochondria and alterations in the structure of the synapses with loss of synaptic vesicles. Extending the combined deprivation caused further mitochondrial swelling and synaptic changes and also led to progressive swelling of the Golgi membranes and the granular endoplasmic reticulum. All these changes were almost completely reversible for up to 20 minutes but were irreversible by 30 minutes, at which time multiple discontinuities had appeared in cell and organelle membranes. Anoxia alone produced alterations similar to those found after somewhat shorter periods of the combined deprivation, whereas glucose withdrawal produced only minor changes. These electron microscopic results correlate quite well with previously reported electrophysiological measurements.  相似文献   
9.
The duck hepatitis B virus (DHBV), a member of the hepadna-virus group, has become a useful animal model for exploring important aspects in this family of viruses such as viral replication, course of infection, and the response to antiviral therapy. In chronically DHBV infected ducks, repeated analyses of liver tissue are important in defining the degree of viral replication and liver injury. We describe a technique for repeated liver biopsy using a Keyes skin punch biopsy. This technique provided sufficient quantities of liver tissue for serial analyses with minimal hemorrhage in 18 Pekin ducks. This procedure offers a safe and reliable method of obtaining serial liver biopsies.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号