首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   34篇
  国内免费   1篇
  2023年   2篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2016年   3篇
  2015年   13篇
  2014年   6篇
  2013年   10篇
  2012年   19篇
  2011年   29篇
  2010年   18篇
  2009年   15篇
  2008年   10篇
  2007年   10篇
  2006年   24篇
  2005年   17篇
  2004年   14篇
  2003年   12篇
  2002年   9篇
  2001年   10篇
  2000年   11篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有269条查询结果,搜索用时 15 毫秒
1.
Membrane proteins are currently the most biomedically important family of proteins, serving as targets for the majority of pharmaceutical agents. It is also clear that they are invariably abundant in all of the genomes sequence so far, representing up to a third of all open reading frames. Finally, and regrettably, it is clear that they are highly resistant to structural elucidation, representing less than 0.2% of the Protein Data Bank. Recent accomplishments in genome sequencing efforts, however, may help offset this imbalance through the availability of evolutionary conservation data. Herein, we develop a novel approach, utilizing a combination of evolutionary conservation data and global searching molecular dynamics simulations to model membrane proteins, deriving a model for the multidrug H+ antiporter EmrE, a transmembrane four-helix bundle. Structures resulting from an extensive, rotational molecular dynamics search, were evaluated by comparing the residue specific interaction energy and the evolutionary conservation data. Subsequent rounds of molecular dynamics, in which confinement of the search space was undertaken in order to achieve a self consistent result, point to a structure that best satisfies the evolutionary conservation data. As the conservation patterns calculated for each of the helices suggested that the different conservation pattern for helix 3 (as well as being the most conserved) might be due to the oligomeric nature of EmrE, a dodecamer of helices was constructed based on the result of a search of helix 3 as a trimer. The resulting interaction energy per residue in the final model is in reasonable agreement with the evolutionary data and consistent with recent site directed mutagenesis experiments, pointing to the strength of this method as a general tool.  相似文献   
2.
3.
The efficient production of biofuels from cellulosic feedstocks will require the efficient fermentation of the sugars in hydrolyzed plant material. Unfortunately, plant hydrolysates also contain many compounds that inhibit microbial growth and fermentation. We used DNA‐barcoded mutant libraries to identify genes that are important for hydrolysate tolerance in both Zymomonas mobilis (44 genes) and Saccharomyces cerevisiae (99 genes). Overexpression of a Z. mobilis tolerance gene of unknown function (ZMO1875) improved its specific ethanol productivity 2.4‐fold in the presence of miscanthus hydrolysate. However, a mixture of 37 hydrolysate‐derived inhibitors was not sufficient to explain the fitness profile of plant hydrolysate. To deconstruct the fitness profile of hydrolysate, we profiled the 37 inhibitors against a library of Z. mobilis mutants and we modeled fitness in hydrolysate as a mixture of fitness in its components. By examining outliers in this model, we identified methylglyoxal as a previously unknown component of hydrolysate. Our work provides a general strategy to dissect how microbes respond to a complex chemical stress and should enable further engineering of hydrolysate tolerance.  相似文献   
4.
Gene regulation in bacteria is usually described as an adaptive response to an environmental change so that genes are expressed when they are required. We instead propose that most genes are under indirect control: their expression responds to signal(s) that are not directly related to the genes’ function. Indirect control should perform poorly in artificial conditions, and we show that gene regulation is often maladaptive in the laboratory. In Shewanella oneidensis MR‐1, 24% of genes are detrimental to fitness in some conditions, and detrimental genes tend to be highly expressed instead of being repressed when not needed. In diverse bacteria, there is little correlation between when genes are important for optimal growth or fitness and when those genes are upregulated. Two common types of indirect control are constitutive expression and regulation by growth rate; these occur for genes with diverse functions and often seem to be suboptimal. Because genes that have closely related functions can have dissimilar expression patterns, regulation may be suboptimal in the wild as well as in the laboratory.  相似文献   
5.
The 97-residue M2 protein from Influenza A virus forms H+-selective ion channels which can be attributed solely to the homo-tetrameric alpha-helical transmembrane domain. Site-directed infrared dichroism spectra were obtained for the transmembrane domain of M2, reconstituted in lipid vesicles. Data analysis yielded the helix tilt angle beta=31.6(+/-6.2) degrees and the rotational pitch angle about the helix axis for residue Ala29 omegaAla29=-59.8(+/-9.9) degrees, whereby omega is defined as zero for a residue located in the direction of the helix tilt. A structure was obtained from an exhaustive molecular dynamics global search protocol in which the orientational data are utilised directly as an unbiased refinement energy term. Orientational refinement not only allowed selection of a unique structure but could also be shown to increase the convergence towards that structure during the molecular dynamics procedure. Encouragingly, the structure obtained is highly consistent with all available mutagenesis and conductivity data and offers a direct chemical insight that relates the altered functionality of the channel to its structure.  相似文献   
6.
7.
The structures of membrane transporters are still mostly unsolved. Only recently, the first two high-resolution structures of transporters of the major facilitator superfamily (MFS) were published. Despite the low sequence similarity of the two proteins involved, lactose permease and glycerol-3-phosphate transporter, the reported structures are highly similar. This leads to the hypothesis that all members of the MFS share a similar structure, regardless of their low sequence identity. To test this hypothesis, we generated models of two other members of the MFS, the Tn10-encoded metal-tetracycline/H(+) antiporter (TetAB) and the rat vesicular monoamine transporter (rVMAT2). The models are based on the two MFS structures and on experimental data. The models for both proteins are in good agreement with the data available and support the notion of a shared fold for all MFS proteins.  相似文献   
8.
Hyde J  Braisted AC  Randal M  Arkin MR 《Biochemistry》2003,42(21):6475-6483
The cytokine hormone interleukin-2 (IL-2) contains a highly adaptive region that binds small, druglike molecules. The binding properties of this adaptive region have been explored using a "tethering" method that relies on the formation of a disulfide bond between the protein and small-molecule ligands. Using tethering, surface plasmon resonance (SPR), and X-ray crystallography, we have discovered that the IL-2 adaptive region contains at least two cooperative binding sites where the binding of a first ligand to one site promotes or antagonizes the binding of a second ligand to the second site. Cooperative energies of interaction of -2 kcal/mol are observed. The observation that the adaptive region contains two adjacent sites may lead to the development of tight-binding antagonists of a protein-protein interaction. Cooperative ligand binding in the adaptive region of IL-2 underscores the importance of protein dynamics in molecular recognition. The tethering approach provides a novel and general strategy for discovering such cooperative binding interactions in specific, flexible regions of protein structure.  相似文献   
9.
10.
Arkin AH  Hazer B 《Biomacromolecules》2002,3(6):1327-1335
Chlorination of microbial polyesters poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxyoctanoate) (PHO) was carried out by passing chlorine gas through their solutions. The chlorine contents in chlorinated PHB (PHB-Cl) and chlorinated PHO (PHO-Cl) were between 5.45 and 23.81 wt % and 28.09 and 39.09 wt %, respectively. Molecular weights of the chlorinated samples were in the range of between one-half to one-fourth of the original values because of hydrolysis during the chlorination process. Thermal properties of the PHO-Cl were dramatically changed with an increase in its glass transition (T(g) = 2 degrees C) and the melting transition (T(m)). The T(g) of PHB-Cl varied from -20 to 10 degrees C, and its T(m) decreased to 148 degrees C. The chlorinated poly(3-hydroxyalkanoate)s (PHA-Cl) were converted to their corresponding quaternary ammonium salts (PHA-N(+)R(3)), sodium sulfate salts (PHA-S), and phenyl derivatives (PHA-Ph). Cross-linked polymers were also formed by a Friedel-Crafts reaction between benzene and PHA-Cl. The modified PHO derivatives were characterized by (1)H NMR and (13)C NMR spectrometry, Fourier transform infrared spectroscopy, gel permeation chromatography, and differential scanning calorimetry techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号