首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   16篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   1篇
  2016年   3篇
  2015年   9篇
  2014年   8篇
  2013年   10篇
  2012年   32篇
  2011年   13篇
  2010年   8篇
  2009年   10篇
  2008年   12篇
  2007年   13篇
  2006年   7篇
  2005年   6篇
  2004年   5篇
  2003年   6篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1996年   2篇
  1994年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
1.
Vasopressin increased intracellular free calcium concentration [Ca2+]i in quin-2-loaded quiescent Swiss 3T3 cells. This effect of vasopressin was rapidly inhibited by biologically active tumour promoters including phorbol dibutyrate (PBt2) and by the synthetic diacylglycerol 1-oleoyl-2-acetyl-glycerol (OAG). Prolonged pretreatment of Swiss 3T3 cells with PBt2 causes a loss of protein kinase C activity (Rodriguez-Pena & Rozengurt, Biochem biophys res commun 120 (1984) 1053) [28]. This pretreatment abolished the inhibition by PBt2 or OAG of vasopressin-mediated increases in Ca2+]i. Vasopressin also stimulated 45Ca2+ efflux from cells pre-loaded with the isotope. This effect of the hormone was also inhibited by PBt2. Prolonged pretreatment with PBt2 prevented the inhibition of vasopressin-stimulated 45Ca2+ release by PBt2. Thus, protein kinase C stimulation inhibits vasopressin-mediated increases in [Ca2+]i and 45Ca2+ efflux apparently by blocking the increased release of Ca2+ from an intracellular store caused by the hormone. These findings suggest that activation of protein kinase C may act as a feedback inhibitor to modulate ligand-mediated increases in [Ca2+]i.  相似文献   
2.
3.
The stimulation of poly(U)-directed polyphenylalanine synthesis produced by modification ofEscherichia coli ribosomes withp-hydroxymercuribenzoate, at low molar ratios of reagent to ribosomes, is due to an increase in the average chain length of polyphenylalanine synthesized, and not to the activation of inactive ribosomes. At a higher molar ratio ofp-hydroxymercuribenzoate to ribosomes, which produces no overall change in activity, approximately 50% of the active ribosomes present in the untreated preparation have been completely inactivated, and the remaining active ones, like the ribosomes of the stimulated preparation, synthesize polyphenylalanine at an increased rate as compared with the untreated ribosomes.Abbreviations pHMB p-hydroxymercuribenzoate - SucNBr N-bromosuccinimide  相似文献   
4.
Mesothelial-to-mesenchymal transition (MMT) is an auto-regulated physiological process of tissue repair that in uncontrolled conditions such as peritoneal dialysis (PD) can lead to peritoneal fibrosis. The maximum expression of peritoneal fibrosis induced by PD fluids and other peritoneal processes is the encapsulating peritoneal sclerosis (EPS) for which no specific treatment exists. Tamoxifen, a synthetic estrogen, has successfully been used to treat retroperitoneal fibrosis and EPS associated with PD. Hence, we used in vitro and animal model approaches to evaluate the efficacy of Tamoxifen to inhibit the MMT as a trigger of peritoneal fibrosis. In vitro studies were carried out using omentum-derived mesothelial cells (MCs) and effluent-derived MCs. Tamoxifen blocked the MMT induced by transforming growth factor (TGF)-β1, as it preserved the expression of E-cadherin and reduced the expression of mesenchymal-associated molecules such as snail, fibronectin, collagen-I, α-smooth muscle actin, and matrix metalloproteinse-2. Tamoxifen-treatment preserved the fibrinolytic capacity of MCs treated with TGF-β1 and decreased their migration capacity. Tamoxifen did not reverse the MMT of non-epitheliod MCs from effluents, but it reduced the expression of some mesenchymal molecules. In mice PD model, we demonstrated that MMT progressed in parallel with peritoneal membrane thickness. In addition, we observed that Tamoxifen significantly reduced peritoneal thickness, angiogenesis, invasion of the compact zone by mesenchymal MCs and improved peritoneal function. Tamoxifen also reduced the effluent levels of vascular endothelial growth factor and leptin. These results demonstrate that Tamoxifen is a therapeutic option to treat peritoneal fibrosis, and that its protective effect is mediated via modulation of the MMT process.  相似文献   
5.
6.
Assessing the distribution of 16S rRNA gene sequences within a biological sample represents the current state-of-the-art for determination of human gut microbiota composition. Advances in dissecting the microbial biodiversity of this ecosystem have very much been dependent on the development of novel high-throughput DNA sequencing technologies, like the Ion Torrent. However, the precise representation of this bacterial community may be affected by the protocols used for DNA extraction as well as by the PCR primers employed in the amplification reaction. Here, we describe an optimized protocol for 16S rRNA gene-based profiling of the fecal microbiota.  相似文献   
7.
8.
Tumors display a high rate of glucose uptake and glycolysis. We investigated how inhibition of glucose metabolism could affect death receptor-mediated apoptosis in human tumor cells of diverse origin. We show that both substitution of glucose for pyruvate and treatment with 2-deoxyglucose enhanced apoptosis induced by tumor necrosis factor (TNF)-alpha, CD95 agonistic antibody, and TNF-related apoptosis-inducing ligand (TRAIL). Inhibition of glucose metabolism enhanced killing of myeloid leukemia U937, cervical carcinoma HeLa, and breast carcinoma MCF-7 cells upon death receptor ligation. Caspase activation, mitochondrial depolarization, and cytochrome c release were increased under these conditions. Glucose deprivation-mediated sensitization to apoptosis was prevented in MCF-7 cells overexpressing BCL-2. Interestingly, the human B-lymphoblastoid cell line SKW6.4, a prototype for mitochondria-independent death receptor-induced apoptosis, was also sensitized to anti-CD95 and TRAIL-induced apoptosis under glucose-free conditions. Changes in c-FLIP(L) and cFLIPs levels were observed in some but not all the cell lines studied following glucose deprivation. Glucose deprivation enhanced death receptor-triggered formation of death-inducing signaling complex and early processing of procaspase-8. Altogether, these results suggest that the glycolytic pathway may be an important target for therapeutic intervention to sensitize tumor cells to selectively toxic soluble death ligands or death ligand-expressing cells of the immune system by facilitating the activation of initiator caspase-8.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号