首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2006年   1篇
  1997年   1篇
  1985年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Using isoelectric focusing, the zymograms of 23 pathogenic and nonpathogenic Naegleria strains were studied for the activity of 16 enzymes. Certain enzymes (lactate dehydrogenase, L-threonine dehydrogenase, superoxide dismutase, acid phosphatase, malic enzyme, and leucine aminopeptidase) proved particularly useful from a practical point of view as they allow easy and reliable identification of pathogenic N. fowleri and N. australiensis as well as nonpathogenic N. lovaniensis strains. Genetic interpretation of these zymograms gave estimates of genetic distances that largely confirmed the taxonomic position of the Naegleria species. In addition, the genetic data suggest that there are two main phylogenetic groups in the genus Naegleria.  相似文献   
2.
3.
The consequences of iron deficiency and iron re-supply were evaluated during the early stages of growth and development of young maize plantlets grown hydroponically in the absence of iron. Various parameters, such as fresh and dry weights, and the concentration of chlorophylls, iron, copper, manganese, calcium, magnesium and potassium in leaves, were measured at various times during the first 15 d of culture. Ten-day-old maize plantlets grown without iron displayed severe alterations, with a 50% decrease in iron and chlorophyll concentrations in leaves, and serious impairments in mitochondria and chloroplast ultrastructure. In contrast, neither leaf nor root growth, nor other mineral concentrations other than iron were significantly affected at this stage of development. In an attempt to characterize proteins potentially involved in iron nutrition or the adaptative response to iron starvation, comparative 2D-gel electrophoretic analysis of polypeptides was carried out on soluble and membrane fractions prepared from leaves and roots of iron-deficient and iron-sufficient 10-d-old maize plantlets. Two polypeptides (11 and 17 kDa, pI of about 6.8) from the microsomal fraction of leaves were found to be repressed under iron-deficient conditions. Some other polypeptides were found to he induced in microsomal fractions either from roots or leaves. Significant variations in the concentration of most of these polypeptides were observed from one experiment to another. It can be concluded from this study that, at this early stage of maize vegetative growth and development, molecular variations induced by iron deficiency do not affect major house-keeping proteins, but probably affect very specific events depending on low abundance proteins.  相似文献   
4.
At concentrations of 10-?3M, Li+ inhibits the recovery of solute uptake capacity of Acer pseudoplatanus L. cell suspension cultures after gas-shock (i.e. after rapid exchange of the atmosphere in the culture flasks for ambient air). It also reduces solute uptake capacity of cells having already attained high rates of uptake during recovery from gas-shock. The effects of Li+ are much greater in cells which have been cultivated in 7 mM K+ solution than in cells cultivated with higher K+ levels (19 mM). Increasing K+ concentration during recovery reverses the effect of 10–3M Li+ and, with sufficiently high concentrations of K+ (≥ 10-?2M) during recovery, the solute uptake capacity of the fully recovered cells can even become greater than that of the control, at least for the low values of substrate concentration (here sulphate 10-?5M). Since Li+ does not affect the time course of solute uptake measured over 15–20 min, it is thought that it interacts with the synthesis and turnover of the solute uptake machinery of the Acer pseudoplatanus cells. Thermodynamic analysis of the flux data also supports the hypothesis that Li+ inhibits the biosynthesis of specific sites of solute permeation, but it does not rule out the possibility that K+ interferes rather on the forces acting on the transport of the considered solutes than on the catalytic structures of permeation.  相似文献   
5.
Pollen morphology has been extensively studied in the Arecaceae, and pollen aperture organization is usually distal monosulcate, as in many monocot families. Much is known about the influence of microsporogenesis on aperture configuration, but the key processes during microsporogenesis responsible for aperture type, number and arrangement are still poorly understood. In order to clarify the developmental sequence underlying aperture type and organization in palm monosulcate pollen, a study of the characteristics of male postmeiotic development was carried out in representative species of four genera of subfamily Coryphoideae, and four genera of subfamily Arecoideae. We found evidence for the occurrence of successive cytokinesis in addition to simultaneous cytokinesis in three Coryphoideae species. Tetrad shape was highly diverse within all species. Our results reveal an unexpected diversity in microsporogenesis from which it may be possible to gain further insight into pollen evolution within the family.  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 151 , 93–102.  相似文献   
6.
When the ambient atmosphere of Acer pseudoplatanus cells in suspension culture is rapidly changed by opening the culture flasks and gently stirring (‘mild gas-shock’) or by filtering and suspending in new medium (‘strong gas-shock’), drastic modifications of the rates of leucine, methionine, glucose, adenine, sulphate and phosphate uptake are observed. Following the gas-shock, rates of uptake rapidly decrease within a few minutes. Subsequently the rates increase again to the intial level within several hours. The uptake of potassium, which is known to be passively distributed between the medium and the interior of many plant cells, at least at high external concentrations, is apparently independent of gas-shock. The shock and recovery kinetics are similar for all solutes investigated (except K+), in particular for different solutes studied in double labelling experiments with the same batch of cells. At the maximum of the after-effect of shock, i.e. at minimum rates of uptake, uptake shows a highly reduced dependence on temperatures. Gas-shock probably inactivates, denatures, structurally alters or releases membrane macromolecules engaged in transport. These molecules are then re-synthesized and re-incorporated into the membrane during recovery.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号