首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   3篇
  2022年   1篇
  2018年   2篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
宏基因组学诞生于上世纪90年代,是指不经过微生物培养阶段,采用直接提取环境中总DNA的方法,对微生物基因总和进行研究的一门新学科.宏基因组技术的出现,使得人们对占微生物总体99%以上不可培养微生物的研究成为现实,微生物基因的可探测空间显著增大.总的来说,目前宏基因组技术的应用主要分为两个方面:一方面是筛选功能基因,开发具有所需功能的蛋白;另一方面是通过对宏基因组文库进行分析,探讨在各种环境下微生物间相互作用和微生物与周围环境间相互影响的规律,以便我们能更加客观、全面地认识微生物世界.在宏基因组技术的应用范围被不断扩展的同时,围绕着宏基因组文库的构建和筛选、测序和分析等方面的研究已成为宏基因组学发展的主要推动力,宏基因组技术的进步将不断提升其应用价值.  相似文献   
2.
榄香烯是我国拥有自主知识产权的抗肿瘤药物之一,因其抗肿瘤活性强、作用范围广、毒副作用轻微和不易产生耐药性等优点,被广泛应用于各类恶性肿瘤的临床治疗中。榄香烯的生产主要依靠药用植物温郁金的分离提取。但温郁金的榄香烯含量低、分离纯化难度大、得率低且成本高,严重阻碍了榄香烯的大规模生产与应用。随着合成生物学的发展,利用微生物构建细胞工厂用于生物合成天然药物成为研究热点,也为榄香烯的生产提供了新的思路。近年来,对榄香烯的生物合成研究在不断深入。研究者通过代谢工程、组合生物学和基因工程等手段,阐明榄香烯生物合成途径和关键酶,已经成功克隆了榄香烯生物合成途径上的一些关键酶基因,初步实现榄香烯的异源生物合成。本文以合成生物学研究思维概述榄香烯生物合成途径及其工程菌的优化,重点综述关键酶吉马烯A合酶(germacrane A synthase, GAS)。从限速酶基因的过表达和分流基因的敲除,融合表达酶工程策略、吉马烯A合酶的体外进化几方面,对其生物合成途径的改造策略进行阐述。同时,也分析提高异源生物合成榄香烯产量所面临的问题与挑战,为榄香烯的高效生物合成提供参考。  相似文献   
3.
萜类化合物是自然界中普遍存在的一大类天然产物,其结构多样。倍半萜化合物是萜类化合物的重要组成部分。倍半萜合酶是倍半萜化合物合成过程中的关键酶。本文综述了近年来多种倍半萜合酶的突变研究,阐明了倍半萜合酶的催化机理。  相似文献   
4.
为了提高固定化嗜热菌蛋白酶的热稳定性,在制备共价固定化嗜热菌蛋白酶的基础上,通过选择氨基酸和醇类小分子来封闭载体表面未反应的活化基团,并考察了固定化酶的催化活性及热稳定性。结果发现:L-Trp和L-Val封闭修饰固定化酶时,在80℃的水浴中加热150 min后其剩余活力仍为93.4%和98.6%,其效果约为未经小分子封闭的固定化嗜热菌蛋白酶的2倍。所筛选的几种小分子物质中,叔戊醇、L-Trp、L-Val及L-Ala不仅能提高固定化嗜热菌蛋白酶的热稳定性,而且也可以提高固定化酶的相对活力,从而更有利于其在工业生产中的应用。  相似文献   
5.
癌胚抗原(carcinoembryonic antigen, CEA)作为肿瘤标志物,在临床肿瘤诊断及肿瘤靶向治疗等方面具有重要应用价值。癌胚抗原单链抗体(CEA-specific single chain antibody fragments , CEA-scFv)能够特异性结合癌胚抗原。本研究将癌胚抗原单链抗体展示于大肠杆菌细胞表面,分析其作为癌胚抗原检测平台和细菌靶向载体的可行性。首先将CEA-scFv基因克隆到表面展示载体pBAD-OmpA-mCherry 中,经酶切和测序证实,成功构建了重组质粒pBAD-OmpA-mCherry-CEA。重组菌经阿拉伯糖诱导后可检测到红色荧光,荧光强度在胰酶的作用下降低,全菌ELISA检测呈阳性反应,提示融合蛋白和目的蛋白质在重组菌表面展示成功。由Western印迹分析可知,融合蛋白的相对分子质量约为85 kD,符合预期设计。进一步的研究提示,重组菌在大肠杆菌表面展示的癌胚抗原单链抗体具有生物活性,能够有效结合A549细胞裂解液的癌胚抗原。在细菌侵染细胞实验中,与对照组相比,重组菌孵育A549细胞后细胞内可明显观察到点状红色荧光,证明重组菌能够靶向侵入癌胚抗原阳性肿瘤细胞。本研究为癌胚抗原相关的快速诊断和基于细菌载体的肿瘤靶向治疗奠定了实验基础。  相似文献   
6.
在体外,利用野生型CYP450BM-3对瓦伦西亚烯进行催化,酶-底物复合物催化NADPH氧化的速率为31±1.0 nmol(nmol P450)-1min-1,但催化产物中没有检测到圆柚酮的生成。突变体R47L/Y51F/F87A与底物复合物催化NADPH氧化的速率高于野生型,为79±6.5 nmol(nmol P450)-1min-1,并在催化产物中检测到圆柚酮的生成,但其产物选择性较差,圆柚酮的含量仅占总产物的6.8%。与此同时,检测了另一个突变体A74G/F87V/L188Q对瓦伦西亚烯的催化效果,发现其与底物复合物对NADPH的氧化速率与突变体R47L/Y51F/F87A相当,但产物中圆柚酮的比率更高,达8.0%。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号