首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
  2024年   1篇
  2023年   1篇
排序方式: 共有2条查询结果,搜索用时 6 毫秒
1
1.
为弄清滇池外海蓝藻水华暴发时空变化规律及其影响因素,将滇池外海分为北、中、南3个区域,基于2002—2018年期间中分辨率成像光谱仪(MODIS)反演的水华面积,分析了上述3个区域蓝藻水华的时空变化特征。基于2007—2018年水文、气象和出入流数据,构建了外海三维水动力生态模型(AEM3D),并计算了各区域的水力滞留时间。通过冗余分析(RDA)、随机森林(RF)和斯皮尔曼相关分析方法,分析了影响以上区域蓝藻水华暴发的主要驱动因子。结果表明:2002—2018年期间,整个滇池外海区域年平均水华面积比(水华面积占该区域总面积比例)呈缓慢下降趋势,空间上由北向南依次递减,整个外海水华暴发面积最大主要发生在秋季。在外海北部区域,其东部水华较西部更为严重,而在中部和南部区域,呈现西部水华较东部更为严重的空间分布模式。通过对各影响因子的统计分析发现,风速、水温和日照时长是上述各区域中蓝藻水华暴发的主要决定性因素。水华暴发期间以西南风为主导风向,且上述区域的水华面积比随风速增加呈下降趋势。在外海各区域,水力滞留时间与水华暴发面积均呈显著正相关,空间上水力滞留时间由北向南逐渐增大,风速和风向是影响蓝...  相似文献   
2.
基于2017年1月—2020年2月千岛湖大坝前水质高频监测数据与湖心区气象数据,使用Lake Analyzer(LA软件计算了水体稳定度指标(“施密特稳定度”和“浮力频率”)和热分层指标(“温跃层深度”和“温跃层厚度”),并与溶解氧垂向分布指标(“氧跃层深度”和“氧跃层强度”)结合分析。结果表明千岛湖存在时间长且稳定的热力分层和溶解氧分层,分层期为每年4—12月,根据结构变化可分为形成期(4—6月)、稳定期(7—9月)和减弱期(10—12月)三个阶段。水体稳定度指标、热分层指标和溶解氧垂向分布指标间相关分析结果表明:水体混合状态是影响溶解氧垂向分布的重要因素,湖体存在热分层则是氧跃层出现的根本原因,水体稳定度升高与热分层结构形成均阻碍溶解氧的垂向交换,促进氧跃层的形成。基于回归分析,发现温跃层深度与氧跃层深度具有良好的线性关系,拟合精度高(R2=0.81, N=25),说明在千岛湖可通过温跃层深度推断氧跃层态势。研究结果同时证明LA在千岛湖的可适用性,以及在其它湖泊的可推广性,提供了水体稳定度和热分层指标定量化计算的工具。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号