首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   11篇
  国内免费   2篇
  2021年   15篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  1995年   2篇
  1982年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
目的: 验证临床受试者所完成的心肺运动试验(CPET)为最大极限运动,进一步设计完善Max试验验证CPET结果客观定量功能评估的准确性及以某特定指标的特定数值作为停止运动的标准是否可行。方法: 选择2017年9月至2019年1月在阜外医院签署知情同意书后进行CPET和Max试验受试者216例。其中正常受试者41例,因CPET峰值呼吸交换率(RER)≤1.10,或运动中心率和血压不上升,对CPET极限运动结果存在质疑的临床患者175例进行研究。其中60例已初步报告,本研究进一步扩大研究。Max试验方法:完成CPET测试后,先蹬车≥60 r/min,再施加130%峰值功率的恒定功率,鼓励受试者运动至不能坚持的极限状态。计算分析Max试验30 s的最大心率和最大摄氧量、及其与峰值心率和峰值摄氧量之间的差值和百分差值。百分差值=(Max值-峰值值)/Max值× 100%。评测标准:①若心率和摄氧量任一指标的差值百分比≤-10%(Max测试的数值低于CPET峰值数据)则定义Max试验操作失败,否则为成功;2若心率和摄氧量的差值百分比均在-10%~10%,则Max试验操作成功,证明CPET数据为极限运动,CPET 峰值相关数据较为准确;③若心率和摄氧量差值任一指标差值百分比≥10%时,则Max试验操作成功,证明CPET结果为非极限运动。结果: 病例组峰值摄氧量(L/min、ml/(min·kg)、%pred)、无氧阈(L/min、ml/(min·kg)、%pred)、峰值氧脉搏(ml/beat、%pred)、峰值RER、峰值收缩压(mmHg)、峰值运动负荷(W/min)、峰值心率(bpm)、摄氧有效性峰值平台(OUEP)(比值、%pred)低于正常组,二氧化碳通气有效性平均90 s最低值(Lowest Ve/VCO2)(比值、%pred)、二氧化碳通气效率斜率(Ve/VCO2 Slope)(比值、%pred)高于正常组(P<0.05)。所有正常组与病例组均安全无任何事件完成CPET和Max试验。216例受试者中,Max试验成功198例(91.7%),其中证明CPET为极限运动182例,为非极限运动16例;失败18例(8.3%)。结论: 在临床检查中,若对CPET结果是否为最大极限存在质疑,利用Max试验可验证CPET是否为极限运动。Max试验方法安全可行,值得进一步深入研究和临床推广应用。  相似文献   
2.
目的: 基于整体整合生理学医学理论提出的呼吸引起循环指标变异的假说,分析研究存在睡眠呼吸异常的慢病患者睡眠期间呼吸和心率变异之间的相关关系。方法: 纳入存在睡眠呼吸异常且呼吸暂停低通气指数(AHI)≥15次/小时的慢病患者11例,签署知情同意书后完成标准化症状限制性极限运动的心肺运动试验(CPET)和睡眠呼吸监测,计算分析病人睡眠期间波浪式呼吸(OB)期与正常平稳呼吸期的呼吸鼻气流、心电图R-R间期心率变异的规律。结果: 存在睡眠呼吸异常的慢病患者CPET峰值摄氧量(Peak VO2)和无氧阈(AT)为(70.8±13.6)%pred和(71.2±6.1)%pred;CPET有5例存在运动诱发的波浪式呼吸(EIOB),6例为呼吸不稳定,提示整体功能状态低于正常人。本组慢病患者AHI为每小时(28.8±10.0)次,睡眠呼吸异常总时间占睡眠总时间的比值为(0.38±0.25);OB周期的平均时间长度为(51.1±14.4)s。本组慢病患者正常平稳呼吸期的呼吸周期数与心率变异周期数的比值(B-n/HRV-B-n)为1.00±0.04,每个呼吸周期节律的心率变异平均幅度(HRV-B-M)为(2.64±1.59) bpm,虽然低于正常人(P<0.05),但却与无睡眠呼吸异常的慢病患者相似(P>0.05);HRV-B-M的变异度CV(HRV-B-M的SD/x)为( 0.33±0.11),期间血氧饱和度(SpO2)虽略低,但并无明显规律性下降与上升。本组慢病患者的OB期间呼吸周期数与心率变异周期数(OB-B-n/OB-HRV-B-n)比值为(1.22±0.18),OB期每个呼吸周期节律的心率变异平均幅度(OB-HRV-B-M)为(3.56±1.57)bpm及其变异度(OB-CV =OB-HRV-B-M的SD/x)为(0.59±0.28),每个OB周期节律的心率变异平均幅度(OB-HRV-OB-M)为(13.75±4.25)bpm,OB期间低通气时SpO2出现明显的下降,OB期间SpO2平均变异幅度(OB-SpO2-OB-M)为(4.79±1.39)%,OB期的OB-B-n/OB-HRV-B-n比值、OB-HRV-OB-M比其正常平稳呼吸期对应指标显著增大(P<0.01)。OB-HRV-B-M虽然与正常平稳呼吸期HRV-B-M相比差异无统计学意义(P>0.05),但其变异度OB-CV却显著增大(P<0.01)。结论: 睡眠呼吸异常的慢病患者OB期的心率变异幅度大于其正常平稳呼吸期,当呼吸模式发生改变时心率变异也发生明显改变,其平稳呼吸期的呼吸周期数与心率变异周期数的比值与正常人以及无睡眠呼吸异常的慢病患者相同,证实心率变异为呼吸源性;而其OB期间心率变异周期数相对于呼吸周期减少直接源于此时的低通气或者呼吸暂停,心率变异也是呼吸源性。  相似文献   
3.
目的:基于整体整合生理学医学理论提出的呼吸引起循环指标变异的假说,分析研究存在睡眠呼吸异常的慢病患者睡眠期间呼吸和心率变异之间的相关关系.方法:纳入存在睡眠呼吸异常且呼吸暂停低通气指数(AHI)≥15次/小时的慢病患者11例,签署知情同意书后完成标准化症状限制性极限运动的心肺运动试验(CPET)和睡眠呼吸监测,计算分析...  相似文献   
4.
目的:观察面罩增加解剖死腔,归纳总结CPET新9图结果中运动诱导的波浪式呼吸(EIOB)产生的规律,并分析出其发生率及易产生波浪式呼吸的年龄段.方法:本研究全部CPET实验数据结果来自2014年至今在聊城市儿童医院门诊完成CPET的3至14岁的501例儿童.通过严格质控,根据Harbor-UCLA标准操作流程在经过特殊...  相似文献   
5.
C-反应蛋白是动物体内一种典型的急性期反应蛋白,本文人工合成了两种可以与C-反应蛋白特异性结合的兼性分子作为C-反应蛋白的模型受体,以便进一步在脂单层膜表面上组装C-反应蛋白的二维晶体。作为第一步工作。本文研究了兼性分子的特性以及荧光光谱方法监测兼性分子与C-反应蛋白之间特异性相互作用。荧光光谱实验结果表明受体与C-反应的特异结合会引起荧光强度的下降。  相似文献   
6.
目的:通过心肺运动试验(CPET)进行二尖瓣关闭不全的运动病理生理学特征的相关研究.方法:自2016年以来签署知情同意后,严格质控下完成规范化CPET极限运动的中重度二尖瓣关闭不全患者26例,取同期正常人11例为对照组.将CPET核心指标按照标准方法分析计算,并与正常人比较,进行组间统计学独立样本t检验.同时将患者是否...  相似文献   
7.
目的: 受试者分别用上肢(臂力计)和下肢精准电磁功率计(自行车)进行症状限制性极限心肺运动试验(CPET),分析探讨上肢CPET的临床价值。方法: 15例受试者(正常人6例和慢病患者9例)签署知情同意书后在不同的2 d里分别完成上肢和下肢精准电磁功率计CPET,分析CPET数据、计算相关核心指标,探究上肢和下肢CPET的异同及其相关性。结果: ①全体15例受试者男8女7,其中6例正常人和9例慢病患者亚组相比仅年龄((33.2±12.7)比(53.6±8.5)岁)和无诊断疾病有显著差异(P<0.05)。②全体受试者上肢CPET峰值心率((131.0±19.0)比(153.0±22.0) bpm,P<0.05)和血压均低于下肢CPET,但血压差异无统计学意义(P>0.05);上肢CPET的峰值潮气量((1.3±0.4)比(1.8±0.4) L)和分钟通气量((51.4±21.1)比(67.9±22.1) L/min)均显著低于下肢(P均<0.05),而峰值呼吸频率无显著差异;采用上肢CPET时,运动时间((6.4±0.6)比(8.5±1.2) min)要短于下肢CPET;峰值负荷功率((73.2±19.6)比(158.5±40.3)W/min)、峰值摄氧量((1.1±0.4)比(1.7±0.4)L/min)、无氧阈((0.6±0.2)比(0.9±0.2) L/min)、峰值氧脉搏((8.6±2.3)比(10.9±2.6) ml/beat)、摄氧通气效率峰值平台(34.7±4.3比39.8±5.3)均较低,而二氧化碳排出通气效率最小值(32.6±3.8比28.7±4.9)及斜率(33.9±4.3比28.3±6.2)高于下肢CPET(P均<0.05)。正常人和慢病两亚组各自的比较结果与整体比较结果无显著差异。③上肢CPET的运动时间,峰值心率,峰值呼吸频率、潮气量、分钟通气量,峰值负荷功率实测值及百分预计值,峰值摄氧量实测值、公斤体重值和百分预计值,无氧阈实测值、公斤体重值,峰值氧脉搏的实测值,摄氧通气效率峰值平台、二氧化碳排出通气效率最小值和斜率的实测值及百分预计值与下肢CPET的结果相关性较好,其余指标无显著相关性。结论: 作为下肢CPET的补充,上肢CPET用于整体功能状态评估具有极高的可行性和更高的安全性,对于指导安全有效个体化精准运动整体方案的实施提供了重要补充,值得进一步深入探究。  相似文献   
8.
目的: 观察研究年轻健康正常人的静息桡动脉脉搏波特征及单次个体化运动后脉搏波的变化情况。方法: 选取阜外医院年轻健康、无任何疾病诊断的正常人16例,首先完成症状限制性极限心肺运动试验(CPET),根据CPET计算Δ50%功率为个体化精准运动强度,完成持续30 min的单次运动。于运动前和运动后10 min、20 min、30 min分别测量50 s桡动脉脉搏波,先用软件自动定点再人工复检得到每个脉搏波特征点:起始点(B)、主波波峰点(P1)、重搏波波谷点(PL)、重搏波波峰点(P2)、结束点(E),从仪器中导出各点对应的横坐标(时间T)和纵坐标(幅值Y)的原始数据,将上一个脉搏波的结束点E视为下一个波的起始点B,TB归零,得到主要观察指标:YB、YP1、YPL、YP2及TP1、TPL、TP2、TE,并计算出ΔYP1(YP1-YB)、ΔYPL(YPL-YB)、ΔYP2(YP2-YB),TE-TPL、(TE-TPL)/TPL、脉率,S1(主波升支斜率)、S2(重搏波升支斜率),ΔYP2-ΔYPL、TP2-TPL作为次要观察指标;定义波峰明显的重搏波为YP2>YPL,计算波峰明显的重搏波出现率(50 s内YP2>YPL的波形个数/波形总个数×100%);对每位患者运动前后的50 s脉搏波数据个体化分析,再将所有数据求均值进行整体分析。结果: ①16例年轻健康受试者(男10女6),年龄(30.6±6.4,24~48)岁;身高(170.4±8.2, 160~188)cm;体质量(63.9±12.8, 43~87)kg。②静息时YB(87.2±5.8,78.1~95.9)、YP1(223.5±15.8,192.7~242.3)、YPL(122.8±7.8,110.0~133.8)、YP2(131.4±4.9,116.7~137.5)、TP1(126.2±42.2,94.2~280.0)、TPL(360.2±44.8,311.5~507.3)、TP2(432.4±50.8,376.2~589.0)、TE(899.7±86.9,728.3~1042.0);ΔYP1(136.3±19.9,96.8~158.6)、ΔYPL(35.7±10.7,16.0~55.7)、ΔYP2(44.3±8.1,22.5~56.5)、TE-TPL(539.5±79.3,405.9~691.3)、(TE-TPL)/TPL(1.5±0.3,0.8~2.0)、脉率(67.3±6.6,57.6~82.4)、S1(1.1±0.2,0.6~1.4)、S2(0.1±0.1,0.0~0.2)、ΔYP2-ΔYPL(8.6±6.1,0.9 ~19.8)、TP2-TPL(72.3±19.9,38.3~108.4)。③运动后10 min, YPL(97.0±13.2比122.8±7.8)、YP2(109.6±12.8比131.4±4.9)、ΔYPL(6.6±9.8比35.7±10.7)、ΔYP2(19.3±11.2比44.3±8.1)显著减小,TE(667.8±123.1比899.7±86.9)、TE-TPL(330.2±128.4比539.5±79.3)、(TE-TPL)/TPL(1.0±0.4比1.5±0.3)显著减小,而脉率(92.2±14.0比67.3±6.6)、ΔYP2-ΔYPL(12.7±9.7比8.6±6.1)、 TP2-TPL(98.0±38.1比72.3±19.9)显著增大(P均<0.05)。运动后20 min和30 min的脉搏波变化趋势与运动后10 min保持一致,但从20 min开始大部分指标逐渐向运动前静息水平恢复。④静息时16例正常人波峰明显的重搏波出现率为94.5%,运动后10 min(96.3%)、20 min(98.5%)、30 min(99.8%)的出现率升高(P均<0.01)。其中10例运动前后波峰明显的重搏波出现率均维持在100%左右;2例运动前出现率已达100%,但运动后10 min有所降低,后又继续升高,30 min时恢复到100%;3例静息出现率偏低,运动后升高近100%;还有1例仅运动后20 min出现率偏低,考虑人为因素影响。结论: 运动对正常人脉搏波的影响主要体现在重搏波上;整体上看,单次精准功率运动后,重搏波位置降低、幅度加深,波峰明显的重搏波出现率普遍提高,且这种改变至少能维持30 min;从个体上看,每位受试者的反应又有所不同。  相似文献   
9.
张源笙  夏琳  桑健  李漫  刘琳  李萌伟  牛广艺  曹佳宝  滕徐菲  周晴  章张 《遗传》2018,40(11):1039-1043
生命与健康多组学数据是生命科学研究和生物医学技术发展的重要基础。然而,我国缺乏生物数据管理和共享平台,不但无法满足国内日益增长的生物医学及相关学科领域的研究发展需求,而且严重制约我国生物大数据整合共享与转化利用。鉴于此,中国科学院北京基因组研究所于2016年初成立生命与健康大数据中心(BIG Data Center, BIGD),围绕国家人口健康和重要战略生物资源,建立生物大数据管理平台和多组学数据资源体系。本文重点介绍BIGD的生命与健康大数据资源系统,主要包括组学原始数据归档库、基因组数据库、基因组变异数据库、基因表达数据库、甲基化数据库、生物信息工具库和生命科学维基知识库,提供生物大数据汇交、整合与共享服务,为促进我国生命科学数据管理、推动国家生物信息中心建设奠定重要基础。  相似文献   
10.
环糊精的模拟酶作用   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号