首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   10篇
  153篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2017年   1篇
  2016年   3篇
  2015年   9篇
  2014年   5篇
  2013年   5篇
  2012年   7篇
  2011年   3篇
  2010年   3篇
  2009年   8篇
  2008年   3篇
  2006年   1篇
  2005年   5篇
  2004年   3篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   8篇
  1990年   6篇
  1989年   3篇
  1988年   7篇
  1987年   2篇
  1986年   7篇
  1985年   2篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1979年   3篇
  1977年   5篇
  1973年   1篇
  1958年   1篇
  1930年   1篇
  1929年   1篇
排序方式: 共有153条查询结果,搜索用时 15 毫秒
1.
2.
The initial plasma clearance and organ distribution of alpha 1-acid glycoprotein and alpha 2-macroglobulin carrying different types of oligosaccharide, side chains was studied in rats. The differently glycosylated proteins were synthesized by rat hepatocytes in culture in the presence of tunicamycin (unglycosylated form), swainsonine (hybrid type), or 1-deoxymannojirimycin (high-mannose type). Deglycosylated glycoproteins (Asn-GlcNAc) were obtained by endoglucosaminidase H treatment of high-mannose-type glycoproteins. Ten minutes after intravenous injection 3% of complex type, 26% of hybrid type, 84% of high-mannose type. 64% of unglycosylated and 80% of deglycosylated alpha 1-acid glycoprotein disappeared from the plasma. The respective values for alpha 2-macroglobulin were 26%, 42%, 59% and 67%. When the clearance of total hepatic secretory proteins was examined, major differences between glycosylated and unglycosylated (glyco)proteins were found, particularly in the case of low-molecular-mass polypeptides. Whereas complex-type alpha 1-acid glycoprotein and alpha 2-macroglobulin showed no accumulation in various organs, hybrid-type alpha 1-acid glycoprotein and alpha 2-macroglobulin were present in spleen and liver. High-mannose-type alpha 1-acid glycoprotein and alpha 2-macroglobulin also accumulated mainly in spleen and liver. Spleen had the highest specific activity; liver, due to its larger organ mass, represented the major organ for the uptake of high-mannose-type glycoproteins. Competition experiments with mannan and GlcNAc-bovine-serum-albumin showed a mannose/GlcNAc receptor-mediated removal. Whereas unglycosylated alpha 1-acid glycoprotein was taken up by the kidney, unglycosylated alpha 2-macroglobulin was found in the spleen. Deglycosylated glycoproteins (Asn-GlcNAc) were removed from the plasma via two different mechanisms: firstly, clearance by the kidney similar to the unglycosylated glycoproteins; secondly, clearance by a mannose/GlcNAc receptor-mediated uptake mainly into the spleen. We conclude that N-linked oligosaccharide side chains are important for the plasma survival of hepatic secretory glycoproteins and that unphysiologically glycosylated forms are cleared by different mechanisms.  相似文献   
3.
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.  相似文献   
4.
Dehydration leads to different physiological and biochemical responses in plants. We analysed the lipid composition and the expression of genes involved in lipid biosynthesis in the desiccation‐tolerant plant Craterostigma plantagineum. A comparative approach was carried out with Lindernia brevidens (desiccation tolerant) and two desiccation‐sensitive species, Lindernia subracemosa and Arabidopsis thaliana. In C. plantagineum the total lipid content remained constant while the lipid composition underwent major changes during desiccation. The most prominent change was the removal of monogalactosyldiacylglycerol (MGDG) from the thylakoids. Analysis of molecular species composition revealed that around 50% of 36:x (number of carbons in the acyl chains: number of double bonds) MGDG was hydrolysed and diacylglycerol (DAG) used for phospholipid synthesis, while another MGDG fraction was converted into digalactosyldiacylglycerol via the DGD1/DGD2 pathway and subsequently into oligogalactolipids by SFR2. 36:x‐DAG was also employed for the synthesis of triacylglycerol. Phosphatidic acid (PA) increased in C. plantagineum, L. brevidens, and L. subracemosa, in agreement with a role of PA as an intermediate of lipid turnover and of phospholipase D in signalling during desiccation. 34:x‐DAG, presumably derived from de novo assembly, was converted into phosphatidylinositol (PI) in C. plantagineum and L. brevidens, but not in desiccation‐sensitive plants, suggesting that PI is involved in acquisition of desiccation tolerance. The accumulation of oligogalactolipids and PI in the chloroplast and extraplastidial membranes, respectively, increases the concentration of hydroxyl groups and enhances the ratio of bilayer‐ to non‐bilayer‐forming lipids, thus contributing to protein and membrane stabilization.  相似文献   
5.
We examined effects of a wide range of doses of three man-made estrogenic chemicals during fetal life on neurobehavioral changes during early postnatal life in mice. Pregnant mice were fed a 4-log range of o,p'DDT, methoxychlor (MXC), and the drug diethystilbestrol (DES) from gestation days 11 to 17. Offspring were examined for changes in postnatal growth and the development of neuromuscular reflexes. Fetal exposure to the estrogenic chemicals altered the number of live pups per litter, the sex ratio of the litters, the anogenital distance of male and female offspring at birth (a bioassay for fetal androgen action), and the body weight of offspring at birth and during the first 5 days of postnatal life. In most cases, however, the dose-response relationships were complex (non-monotonic), with effects at the highest dose examined being opposite to effects seen at lower doses. The two markers of neurobehavioral development, righting and cliff avoidance reflexes, were not sensitive indicators of prenatal estrogen exposure. Only maternal exposure to the lowest MXC dose produced an increase in reactivity in righting and cliff avoidance tests in offspring.  相似文献   
6.
This study aimed to investigate the association among genetic variants of the complement pathway CFB R32Q (rs641153), C3 R102G (rs2230199), and CFH (rs1410996) with age-related macular degeneration (AMD) in a sample of the Brazilian population. In a case-control study, 484 AMD patients were classified according to the clinical age-related maculopathy grading system (CARMS) and compared to 479 unrelated controls. The genetic variants rs1410996 of complement H (CFH), rs641153 of complement factor B (CFB), and rs2230199 of complement 3 (C3) were evaluated through polymerase chain reaction (PCR) and direct sequencing. The associations between single nucleotide polymorphisms (SNPs) and AMD, adjusted by age, were assessed by using logistic regression models. A statistically significant association was observed between AMD risk and rs2230199 variant with an OR of 2.01 (P  = 0.0002) for CG individuals compared to CC individuals. Regarding the comparison of advanced AMD versus the control group, the OR was 2.12 (P = 0.0036) for GG versus AA genotypes for rs1410996 variant. Similarly, the OR for rs2230199 polymorphism was 2.3034 (P  = 5.47e-05) when comparing CG individuals to CC carriers. In contrast, the rs641153 variant showed a significant protective effect against advanced AMD for GA versus GG genotype (OR = 0.4406; P  = 0.0019). When comparing wet AMD versus controls, a significant association was detected for rs1410996 variant (OR = 2.16; P  = 0.0039) comparing carriers of the homozygous GG versus AA genotype, as well as in the comparisons of GG (OR = 3.0713; P  = 0.0046) and CG genotypes (OR = 2.2249; P  = 0.0002) versus CC genotype for rs2230199 variant, respectively. The rs641153 variant granted a significant protective effect against wet AMD for GA versus GG genotypes (OR = 0.4601; P  = 0.0044). Our study confirmed the risk association between rs2230199 and rs1410996 variants and AMD, and the protective role against AMD for rs641153 variant.  相似文献   
7.

Background

Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity. Elucidating the genetic and molecular mechanisms underlying maize Al tolerance is expected to accelerate the development of Al-tolerant cultivars.

Results

Five genomic regions were significantly associated with Al tolerance, using 54,455 SNP markers in a recombinant inbred line population derived from Cateto Al237. Candidate genes co-localized with Al tolerance QTLs were further investigated. Near-isogenic lines (NILs) developed for ZmMATE2 were as Al-sensitive as the recurrent line, indicating that this candidate gene was not responsible for the Al tolerance QTL on chromosome 5, qALT5. However, ZmNrat1, a maize homolog to OsNrat1, which encodes an Al3+ specific transporter previously implicated in rice Al tolerance, was mapped at ~40 Mbp from qALT5. We demonstrate for the first time that ZmNrat1 is preferentially expressed in maize root tips and is up-regulated by Al, similarly to OsNrat1 in rice, suggesting a role of this gene in maize Al tolerance. The strongest-effect QTL was mapped on chromosome 6 (qALT6), within a 0.5 Mbp region where three copies of the Al tolerance gene, ZmMATE1, were found in tandem configuration. qALT6 was shown to increase Al tolerance in maize; the qALT6-NILs carrying three copies of ZmMATE1 exhibited a two-fold increase in Al tolerance, and higher expression of ZmMATE1 compared to the Al sensitive recurrent parent. Interestingly, a new source of Al tolerance via ZmMATE1 was identified in a Brazilian elite line that showed high expression of ZmMATE1 but carries a single copy of ZmMATE1.

Conclusions

High ZmMATE1 expression, controlled either by three copies of the target gene or by an unknown molecular mechanism, is responsible for Al tolerance mediated by qALT6. As Al tolerant alleles at qALT6 are rare in maize, marker-assisted introgression of this QTL is an important strategy to improve maize adaptation to acid soils worldwide.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-153) contains supplementary material, which is available to authorized users.  相似文献   
8.
9.
Summary. Gaucher disease is caused by an autosomal-recessive deficiency of glucocerebrosidase. Cells of monocytic/macrophagic origin accumulate glucosylceramide. This leads to hepatosplenomegaly, bone destruction, thrombocytopenia and anemia. Enzyme replacement therapy (ERT) with macrophage-targeted glucocerebrosidase leads to normalization of these parameters. The way of macrophage activation in Gaucher disease is not known. Recently, the osmolytes taurine, betaine and inositol were identified as important regulators of macrophage function in liver. Therefore, the role of plasma taurine in Gaucher disease as a primarily macrophage-derived disease was studied. Fasting plasma levels were measured from blood samples of healthy control subjects (n = 29, m : f = 11 : 18, mean age 37 ± 3 years), from un-treated Gaucher patients (n = 16, m : f = 7 : 9, mean age 44 ± 4 years) and those treated for 37 ± 2 months (n = 54, m : f = 19 : 35, mean age 47 ± 2 years). Amino acid analysis was carried out in a BioChrom amino acid analyzer. In the untreated patients, plasma taurine was 45 ± 3 μM, as compared to the controls with a plasma taurine of 63 ± 4 μM (p < 0.01). The aver-age increase of plasma taurine during the first year of ERT was 18 ± 8 μM (n = 10). Patients treated for an average of 37 months (range 1–9 years of ERT) had a plasma taurine of 65 ± 4 μM (n = 54), which was not different from the controls. It is concluded that Gaucher patients show decreased plasma taurine levels and that therapy of Gaucher disease might correct this. It has to be established, whether decreased taurine availability is a cofactor of the permanent activation of glucosylceramide-storing monocytes/macrophages in this disease. Received January 25, 2000/Accepted January 31, 2000  相似文献   
10.
1. Proteolysis was measured as [3H]leucine release from isolated perfused livers from rats, which had been labeled in vivo by an intraperitoneal injection of [3H]leucine about 16 h prior to the perfusion experiment. In livers from fed rats, insulin (35 nM) inhibited [3H]leucine release by 24.5 +/- 1.3% (n = 15) and led to an amiloride-sensitive, bumetanide-sensitive and furosemide-sensitive net K+ uptake of 5.53 +/- 0.31 mumol.g-1 (n = 15). Both the insulin effects on net K+ uptake and on [3H]leucine release were diminished by about 65% or 55% in presence of furosemide (0.1 mM) or bumetanide (5 microM), respectively. The insulin-induced net K+ uptake was virtually abolished in the presence of amiloride (1 mM) plus furosemide (0.1 mM). 2. In perfused livers from 24-h-starved rats, both the insulin-stimulated net K+ uptake and the insulin-induced inhibition of [3H]leucine release were about 80% lower than observed in experiments with livers from fed rats. The insulin effects on K+ balance and [3H]leucine release were not significantly influenced in the presence of glycine (2 mM), although glycine itself inhibited [3H]leucine release by 30.3 +/- 0.3% (n = 4) and 13.8 +/- 1.2% (n = 5) in livers from starved and fed rats, respectively. When livers from fed rats were preswollen by hypoosmotic perfusion (225 mOsmol.l-1), both the insulin-induced net K+ uptake and the inhibition of [3H]leucine release were diminished by 50-60%. 3. During inhibition of [3H]leucine release by insulin, further addition of glucagon (100 nM) led to a marked net K+ release from the liver (3.82 +/- 0.24 mumol.g-1), which was accompanied by stimulation of [3H]leucine release by 16.4 +/- 4.6% (n = 4). 4. Ba2+ (1 mM) infusion led to a net K+ uptake by the liver of 3.2 +/- 0.2 mumol.g-1 (n = 4) and simultaneously inhibited [3H]leucine release by 12.4 +/- 1.7% (n = 4). 5. There was a close relationship between the Ba2+ or insulin-induced net K+ uptake and the degree of inhibition of [3H]leucine release, even when the K+ response to insulin was modulated by bumetanide, furosemide, glucagon, hypotonic or glycine-induced cell swelling or the nutritional state. 6. The data suggest that the insulin-induced net K+ uptake involves activation of both NaCl/KCl cotransport and Na+/H+ exchange.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号