首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   7篇
  214篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2016年   4篇
  2015年   4篇
  2013年   3篇
  2012年   9篇
  2011年   2篇
  2010年   3篇
  2009年   34篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   7篇
  2004年   7篇
  2003年   11篇
  2002年   6篇
  2001年   13篇
  2000年   1篇
  1999年   11篇
  1998年   7篇
  1997年   9篇
  1996年   6篇
  1995年   8篇
  1994年   6篇
  1993年   8篇
  1992年   5篇
  1991年   2篇
  1990年   9篇
  1989年   5篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
排序方式: 共有214条查询结果,搜索用时 23 毫秒
1.
Abstract Lipid bilayer experiments were performed with chromosome-encoded haemolysin of Escherichia coli . The addition of the toxin to the aqueous phase bathing lipid bilayer membranes of asolectin resulted in the formation of transient ion-permeable channels with two states at small transmembrane voltages. One is prestate (single-channel conductance 40 pS in 0.15 M KCl) of the open state, which had a single-channel conductance of 420 pS in 0.15 M KCl and a mean lifetime of 30 s. Membranes formed of pure lipids were rather inactive targets for this haemolysin. Experiments with different salts suggested that the haemolysin channel was highly cation-selective at neutral pH. The mobility sequence of the cations in the channel was similar if not identical to their mobility sequence in the aqueous phase. The single-channel data were consistent with a wide, water-filled channel with an estimated minimal diameter of about 1 nm. The pore-forming properties of chromosome-encoded haemolysin were compared with those of plasmid-encoded haemolysin. Both toxins share common features, oligomerize probably to form pores in lipid bilayer membranes. Both types of haemolysin channels have similar properties but different lifetimes.  相似文献   
2.
The nerve growth factor-inducible large external (NILE) glycoprotein and the neural cell adhesion molecule L1 were shown to be immunochemically identical. Immunoprecipitation with L1 and NILE antibodies of [3H]fucose-labeled material from culture supernatants and detergent extracts of NGF-treated rat PC12 pheochromocytoma cells yielded comigrating bands by SDS-PAGE. NILE antibodies reacted with immunopurified L1 antigen, but not with N-CAM and other L2 epitope-bearing glycoproteins from adult mouse brain. Finally, by sequential immunoprecipitation from detergent extracts of [35S]methionine-labeled early post-natal cerebellar cell cultures or [3H]fucose-labeled NGF-treated PC12 cells, all immunoreactivity for NILE antibody could be removed by pre-clearing with L1 antibody and vice versa.  相似文献   
3.
The monoclonal L5 antibody reacts with an N-glycosidically linked carbohydrate structure which is present on the neural cell adhesion molecule L1, neural chondroitin sulfate proteoglycans, and other not yet identified glycosylated proteins. Using this antibody, we isolated and characterized proteoglycans from adult mouse brain and cultured astrocytes biosynthetically labeled with Na2 35SO4 and a 3H-amino acid mixture. Our data suggest that the L5 proteoglycans of both sources are identical in their biochemical properties. The apparent molecular mass of the L5 proteoglycan is approximately 500 kDa. Digestion of the iodinated L5 proteoglycan from mouse brain and of the [35S]methionine-labeled L5 proteoglycan from cultured astrocytes with proteinase-free chondroitinases ABC and AC revealed three major core proteins with apparent molecular masses of approximately 380, 360, and 260 kDa. These represent molecularly distinct protein cores.  相似文献   
4.
Abstract: Basic fibroblast growth factor (FGF-2) is normally expressed as a cell-associated protein, and accordingly it is not clear how it exerts its action on target cells in vivo. It has been proposed that cells release, by death or other mechanisms, small amounts of FGF-2 that then acts in an autocrine manner. To address the question of whether it is necessary that FGF-2 remain cell associated or needs to be secreted from cells to have biological activity, we expressed the 18-kDa form of FGF-2 in primary fibroblasts as a cell-associated (FGF-2-B) or as a secreted (FGF-2-S) protein. FGF-2 protein is detected in cell lysates and membrane fractions of both cell types, whereas it is present in significant amounts only in the conditioned medium of FGF-2-S cells. No FGF-2 is detected in control (untransfected) cells. FGF-2-S cells also grow faster than the control or FGF-2-B cells. Yet, when evaluated for their ability to promote the survival of embryonic hippocampal neurons in vitro, both the cell types are active, establishing the activity of the transgene product. We conclude that FGF-2 is active when engineered to be expressed as a cell-associated form or secreted from cells.  相似文献   
5.
The microdistribution of five butterfly species through their flying season was analyzed in a mosaic-like habitat, brought about by secondary succession In order to explain the patterns observed, activity patterns and the use and distribution of nectar sources were determined Emphasis was laid on the changing allocation of visits to flower species and changing abundances of flowers during the season The use of nectar sources was basically limited to three flower species, Centaurea scabiosa, C bracteata and Serratula tinctoria As a consequence, niche breadth values were generally low and niche overlaps generally high Some butterflies changed their patterns of flower visits during the season and therefore reduced niche overlap with the other butterfly species The microdistribution of Melanargia galathea, Lysandra condon, Ochlodes venatus and Lictoria achilleae was strongly influenced by the distribution of their preferred nectar sources as well as by areas generally rich in flowers Changing flower preferences of Melanargia galathea and Lysandra coridon males during the course of the season were also expressed by changes in the correlations between the distribution of these butterflies and their nectar plants The distribution of nectar sources was not found to be of importance for Coenonympha arcanta, a species which rarely visited flowers  相似文献   
6.
The extracellular matrix molecule tenascin has been implicated in neuron-glia recognition in the developing central and peripheral nervous system and in regeneration. In this study, its role in Bergmann glial process-mediated neuronal migration was assayed in vitro using tissue explants of the early postnatal mouse cerebellar cortex. Of the five mAbs reacting with nonoverlapping epitopes on tenascin, mAbs J1/tn1, J1/tn4, and J1/tn5, but not mAbs J1/tn2 and J1/tn3 inhibited granule cell migration. Localization of the immunoreactive domains by EM of rotary shadowed tenascin molecules revealed that the mAbs J1/tn4 and J1/tn5, like the previously described J1/tn1 antibody, bound between the third and fifth fibronectin type III homologous repeats and mAb J1/tn3 bound between the third and fifth EGF-like repeats. mAb J1/tn2 had previously been found to react between fibronectin type III homologous repeats 10 and 11 of the mouse molecule (Lochter, A., L. Vaughan, A. Kaplony, A. Prochiantz, M. Schachner, and A. Faissner. 1991. J. Cell Biol. 113:1159-1171). When postnatal granule cell neurons were cultured on tenascin adsorbed to polyornithine, both the percentage of neurite-bearing cells and the length of outgrowing neurites were increased when compared to neurons growing on polyornithine alone. This neurite outgrowth promoting effect of tenascin was abolished only by mAb J1/tn2 or tenascin added to the culture medium in soluble form. The other antibodies did not modify the stimulatory or inhibitory effects of the molecule. These observations indicate that tenascin influences neurite outgrowth and migration of cerebellar granule cells by different domains in the fibronectin type III homologous repeats.  相似文献   
7.
The structure and function of tenascins in the nervous system.   总被引:5,自引:0,他引:5  
The tenascins are a family of large extracellular matrix glycoproteins that comprise five known members. Three of these, tenascin-C (TN-C) tenascin-R (TN-R) and tenascin-Y (TN-Y) are expressed in specific patterns during nervous system development and are down-regulated after maturation. The expression of TN-C, the best studied member of the family, persists in restricted areas of the nervous system that exhibit neuronal plasticity and is reexpressed after lesion. Numerous studies in vitro suggest specific roles for tenascins in the nervous system involving precursor cell migration, axon growth and guidance. TN-C has been shown to occur in a large number of isoform variants generated by combinatorial variation of alternatively spliced fibronectin type III (FNIII) repeats. This finding indicates that TN-C might specify neural microenvironments, a hypothesis supported by recent analysis of TN-C knockout animals, which has begun to reveal subtle nervous system dysfunctions.  相似文献   
8.
9.
Dispersal failure contributes to plant losses in NW Europe   总被引:1,自引:0,他引:1  
The ongoing decline of many plant species in Northwest Europe indicates that traditional conservation measures to improve the habitat quality, although useful, are not enough to halt diversity losses. Using recent databases, we show for the first time that differences between species in adaptations to various dispersal vectors, in combination with changes in the availability of these vectors, contribute significantly to explaining losses in plant diversity in Northwest Europe in the 20th century. Species with water- or fur-assisted dispersal are over-represented among declining species, while others (wind- or bird-assisted dispersal) are under-represented. Our analysis indicates that the 'colonization deficit' due to a degraded dispersal infrastructure is no less important in explaining plant diversity losses than the more commonly accepted effect of eutrophication and associated niche-based processes. Our findings call for measures that aim to restore the dispersal infrastructure across entire regions and that go beyond current conservation practices.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号