首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   9篇
  16篇
  2010年   2篇
  2008年   1篇
  2007年   4篇
  2005年   1篇
  2003年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
2.
We compared HEp-2-derived cells cured of persistent poliovirus infection by RNA interference (RNAi) with parental cells, to investigate possible changes in the efficiency of RNAi. Lower levels of poliovirus replication were observed in cured cells, possibly facilitating virus silencing by antiviral small interfering RNAs (siRNAs). However, green fluorescent protein (GFP) produced from a measles virus vector and also GFP and luciferase produced from plasmids that do not replicate in human cells were more effectively silenced by specific siRNAs in cured than in control cells. Thus, cells displaying enhanced silencing were selected during curing by RNAi. Our results strongly suggest that the RNAi machinery of cured cells is more efficient than that of parental cells.Small interfering RNAs (siRNAs) mediate RNA interference (RNAi), a natural biological phenomenon regulating a wide range of cellular pathways (8, 20). RNAi-based therapies with siRNAs or small hairpin RNAs (shRNAs) have been developed against several viral infections, and a reduction of the viral yield by several orders of magnitude has frequently been obtained (4, 9). However, virus clearance from cells and the complete cure of persistent virus infections have only rarely been reported (24, 25). We have developed several models of persistent virus infection by using poliovirus (PV), a positive-strand RNA virus of the Picornaviridae family (5, 7, 16, 21). We previously studied the effects of antiviral siRNAs applied months after the infection of HEp-2 cells with a persistent PV mutant (7, 25). We used a mixture (“the Mix”) of two synthetic siRNAs targeting the viral RNA genome in the 5′ noncoding (NC) region and the 3D polymerase (3Dpol) (siRNA-5′NC and siRNA-3Dpol, respectively; synthesized by Sigma-Proligo). When repeated transfections with the Mix were performed in persistently PV-infected cultures, most cultures stopped producing virus (25). Here, we investigate the important issue of changes in RNAi efficacy following siRNA treatment, 2 to 5 months after the cure. The efficiency of gene silencing in cells was stable during this period.We used the HEp-Q4 and -Q5 cell lines, which were cured of persistent PV infection after transfections with the Mix (25). The cured cells and their parental cell line, HEp-2, had similar growth rates (data not shown). To compare PV silencing efficiencies in the three cell lines, they were transfected either with the Mix or with an irrelevant siRNA (siRNA-IRR) in the presence of Lipofectamine 2000 (Invitrogen) in 24-well plates as previously described (25). Treated and mock-treated cells were infected 16 h posttransfection with PV strain Sabin 3, at a multiplicity of infection (MOI) of 1 50% infectious dose (ID50) per cell. The viral progeny was titrated 24 h postinfection, as previously described (16). HEp-Q4 and HEp-Q5 were permissive to PV infection, although viral yields were about 1 log lower in these cells than in HEp-2 cells (Fig. (Fig.1A).1A). Virus silencing was observed in all three cell lines treated with the Mix; however, silencing was significantly more efficient in HEp-Q4 (≈2.2 times more efficient; P = 0.013, Student''s t test) and HEp-Q5 (≈5.6 times more efficient; P = 0.015) than in HEp-2 cells (Fig. 1A and B). Similar results were obtained with an shRNA (Thermo Scientific) targeting the same region as the siRNA-5′NC (data not shown).Open in a separate windowFIG. 1.Efficiency of enterovirus silencing in HEp-2, HEp-Q4, and HEp-Q5 cells after transfection with specific siRNAs. (A) Yield of progeny virus produced by cells infected at an MOI of 1 ID50, 16 h posttransfection with the antiviral Mix containing two anti-PV siRNAs (20 pmol), the irrelevant siRNA-IRR (20 pmol), or no siRNA. Samples were harvested 24 h postinfection. Each bar represents the mean value ± SEM of six infected cultures from three independent experiments. (B to E) For each cell line, silencing efficiency is expressed as the ratio of infectious virus yield (titer in ID50/ml) in the presence of the irrelevant siRNA-IRR to infectious virus yield (titer in ID50/ml) in the presence of the antiviral siRNAs in cured cells, normalized with respect to the silencing efficiency in HEp-2 cells. S2, PV strain Sabin 2. (F) GFP silencing efficiency for each cell line is expressed as a ratio [1 − (mean GFP levels in the presence of siRNA-eGFP)/(mean GFP levels in the presence of siRNA-IRR)] in cured cells, normalized with respect to the efficiency of silencing in HEp-2 cells. Each bar represents the mean value ± SEM of at least four cultures from two independent experiments. *, P < 0.05 based on Student''s t test comparing HEp-Q4 and HEp-Q5 with HEp-2 cells.We investigated whether the differences in silencing efficacies between the three cell lines were due to differences in siRNA transfection efficiency by transfecting HEp-2, HEp-Q4, and HEp-Q5 cells with fluorescein isothiocyanate-conjugated siRNA (siRNA-FITC; 20 pmol/well; Cell Signaling) and testing them between 4 and 48 h posttransfection. The fluorescence of transfected cells was measured with a FACScan flow cytometer (Becton Dickinson), and data were analyzed with CellQuest software (Becton Dickinson). The percentages of siRNA-FITC-positive cells were similar for all cell types (Fig. (Fig.2A).2A). The mean fluorescence per positive cell and the percentage of cells displaying fluorescence peaked 16 and 24 h posttransfection, respectively, and decreased thereafter (Fig. (Fig.2).2). These findings suggest both that the presence of siRNAs in cells was similarly transient in the three cell types, as previously reported (27), and that the high silencing efficiencies in cured cells were not a consequence of higher transfection efficiencies. All subsequent experiments were performed between 16 and 40 h posttransfection.Open in a separate windowFIG. 2.Transfection efficiencies of fluorescein-conjugated siRNAs in HEp-2, HEp-Q4, and HEp-Q5 cells. A fluorescent siRNA-FITC (20 pmol) was used to transfect each of the three cell lines in the presence of Lipofectamine 2000. Fluorescent cells were analyzed 4 to 48 h posttransfection by using a FACScan flow cytometer (Becton Dickinson). The percentage of fluorescent cells (A) and the mean fluorescence per positive cell, in arbitrary units (B), are shown. Each bar represents the mean value ± SEM. (C) Representative FACS plots (cell granularity versus cell size), showing the similarities between the three cell populations.Fluorescence-activated cell sorting (FACS) plots for granularity versus cell size were very similar for the three cell lines (Fig. (Fig.2C),2C), as were those for cell numbers versus fluorescence (not shown), suggesting highly related cell populations. Although highly probable, it remains to be confirmed that the cured cells originated from a subpopulation of HEp-2 cells.Virus silencing was also investigated in cured cells infected with Sabin 2 or coxsackievirus A17 (CAV17) strain 67591 (22) or in cells transfected with Sabin 2 RNA. The experimental conditions used for Sabin 2 and CAV17 were identical to those for Sabin 3, except that only the 3D polymerase was targeted by siRNAs. Sabin 2 RNA (1 μg) was prepared as previously described (12) and used with siRNA-3Dpol (20 pmol/well) for the cotransfection of cells in the presence of Lipofectamine 2000. Virus yields were determined 7.5 h after transfection. In all cases, virus silencing was more effective in HEp-Q4 and -Q5 cells than in HEp-2 cells (Fig. 1C to E). Additional experiments were performed with a PV replicon encoding the green fluorescent protein (GFP), PV-eGFP (28) (2 μg/well), which was used with siRNA-eGFP (20 pmol/well; Ambion) for cotransfection. GFP fluorescence was measured by flow cytometry, 16 h after transfection. As for PV, a higher silencing efficiency was observed in cured cells than in HEp-2 cells (Fig. (Fig.1F1F).We then investigated whether the lower level of viral multiplication in HEp-Q4 and -Q5 cells in the absence of siRNAs involved an entry or postentry step. We quantified the expression of the PV receptor (CD155) at the surface of cells. We used flow cytometry after indirect immunofluorescence labeling with anti-CD155 antibodies, as previously described (16). More than 98.4% ± 2% (mean ± standard error of the mean [SEM]) of cured cells, like HEp-2 cells, tested positive for CD155 (data not shown). In the absence of siRNAs, a decrease in viral replication was also observed in HEp-Q4 and -Q5 cells infected with the Sabin 2 PV strain in cells, in which the early stages of the viral cycle were bypassed by transfection with Sabin 2 RNA, and in cells infected with the CAV17 virus, which uses a cell receptor other than CD155 (12) (data not shown). Together, these results suggest that PV multiplication is reduced at a postentry step, probably at replication, in cured cells.We investigated whether PV silencing was also enhanced in other HEp-derived cells in which Sabin 3 PV multiplication was reduced by using HEp-S31 (cl18) cells that had been cured of persistent PV infection by growth at a supraoptimal temperature rather than by RNAi (2). PV yield was ≈1.6 logs lower in HEp-S31 (cl18) cells than in HEp-2 cells (data not shown). Sabin 3 PV silencing in HEp-S31 (cl18) cells was 1.7 ± 0.9 times more effective (mean of six experiments) than that in HEp-2 cells (relative efficacy of 1) (data not shown), but this difference was not significant. However, these results do not exclude the possibility that reduced PV replication facilitates PV silencing by the Mix in cured cells. We therefore pursued our work with a different virus.We investigated whether the high silencing efficiency in HEp-Q4 and -Q5 cells was specific to enteroviruses by using a measles virus expressing GFP, MV-eGFP (26), and siRNA-eGFP to silence GFP expression. Cells were transfected with either siRNA-eGFP or siRNA-IRR, infected with MV-eGFP (1 ID50 per cell, 16 h posttransfection), and the GFP silencing efficiency was determined 40 h posttransfection by flow cytometry. For each cell line, silencing efficiency was expressed as a percentage {[1 − (percentage of siRNA-eGFP-transfected cells expressing GFP)/(percentage of siRNA-IRR-transfected cells expressing GFP)] × 100}. GFP silencing was significantly stronger in HEp-Q4 cells (≈14%; P = 0.048) and HEp-Q5 cells (≈17%; P = 0.010) than in HEp-2 cells (Fig. (Fig.3A).3A). There was no significant difference in the silencing efficiency of GFP between HEp-Q4 and -Q5 cells (Fig. (Fig.3A).3A). The anti-PV Mix did not silence GFP expression (data not shown), indicating that the silencing of GFP was not due to anti-PV siRNAs persisting in cured cells months after the initial treatment.Open in a separate windowFIG. 3.Efficiency of GFP and luciferase silencing in HEp-2, HEp-Q4, and HEp-Q5 cells after transfection with specific siRNAs. (A and B) GFP silencing, expressed as a percentage calculated for each cell line as follows: {[1 − (GFP expression in the presence of siRNA-eGFP)/(GFP expression in the presence of the irrelevant siRNA-IRR)] × 100}. (A) Cells were infected 16 h posttransfection with a measles virus encoding eGFP (MV-eGFP [26]) at an MOI of 1 ID50/cell, and fluorescent cells were analyzed 24 h after infection (40 h posttransfection). Each bar represents the mean value ± SEM of three independent experiments. (B) Cells were cotransfected with pEGFP-C1 and siRNA-eGFP or siRNA-IRR and analyzed 40 h later. Each bar represents the mean value ± SEM of four independent experiments. (C) Luciferase silencing efficiency for each cell line, expressed as the ratio of luciferase activity in the presence of the irrelevant siRNA-IRR to luciferase activity in the presence of the specific siRNAs in cured cells, normalized with respect to silencing efficiency in HEp-2 cells. Relative efficiencies are shown as in Fig. Fig.11 for luciferase, because the enzymatic reaction amplified the signal. Each bar represents the mean value ± SEM of triplicates from three independent experiments. *, P < 0.05 based on Student''s t test comparing HEp-Q4 and HEp-Q5 with HEp-2 cells.To test whether the high silencing efficiency in HEp-Q4 and -Q5 cells was dependent on viral infection, plasmid vectors pEGFP-C1 (Clontech Laboratories) and pRL-CMV (Promega) were used to generate GFP (6) and Renilla luciferase (18), respectively. These plasmids do not replicate in human cells. Cells (106) were cotransfected with pEGFP-C1 (1 μg) and siRNAs (20 pmol) in the presence of Lipofectamine 2000, as recommended by the manufacturer. GFP fluorescence was analyzed by flow cytometry 40 h posttransfection. Silencing efficiencies were expressed as a percentage {[1 − (mean GFP levels in the presence of siRNA-eGFP)/(mean GFP levels in the presence of siRNA-IRR)] × 100)}. Mean silencing efficiency was significantly higher in HEp-Q4 (≈15%; P = 0.003) and HEp-Q5 (≈15%; P = 0.002) cells than in HEp-2 cells (Fig. (Fig.3B).3B). The efficiency with which the GFP encoded by pEGFP-C1 was silenced was similar in HEp-Q4 and -Q5 cells.The efficacy of siRNAs was then assessed with pRL-CMV, which encodes the Renilla luciferase and Silencer Renilla luciferase (AM4630; Ambion). Cells (106) were cotransfected with the plasmid (100 ng) and either specific or irrelevant siRNA (7 pmol) in the presence of Lipofectamine 2000. Luciferase assays were performed with a Dual-Glo luciferase assay system (Promega), as recommended by the manufacturer at 40 h posttransfection, and luminescence was measured with a luminometer (Centro LB960; Berthold). The results of the sensitive luciferase assays confirmed that the relative efficiency of silencing was significantly higher in cured than in parental cells (Fig. (Fig.3C).3C). By contrast, results obtained in HEp-S31 (cl18) cells, cured without siRNAs, were not significantly different from those obtained in control HEp-2 cells (data not shown), strongly suggesting that the treatment of HEp-Q4 and -Q5 cells with specific siRNAs selected cells in which siRNAs mediated silencing more efficiently than in parental cells.The difference in silencing efficiency between cured and HEp-2 cells may be due to differences in the abundance and/or efficacy of cellular factors involved in gene silencing. Some major actors of the RNAi pathway, particularly those associated with the RNA-induced silencing complex (RISC), have been identified (3, 10, 13, 19). The active endonucleolytic core of the RISC includes the guide strand of the siRNA and a slicer protein called Argonaute 2 (Ago2) (17). We used Western blotting to study Ago-2 and other factors contributing to the function of RISC (3, 10, 11, 14, 19, 23): the endonuclease Dicer, the transactivation response RNA binding protein (TRBP), the protein activator of double-stranded RNA-dependent protein kinase (PACT), and the RNA helicase A (RHA) (Fig. (Fig.4).4). Exportin 5, which plays a role upstream from the dicing process in the export of small RNA precursors (29), was included as a control.Open in a separate windowFIG. 4.Comparative analysis of proteins involved in RNAi in HEp-2, HEp-Q4, and HEp-Q5 cell lines. Whole-cell lysates were tested for Exportin 5 (A), Dicer (B), Ago-2 (C), the helicase RHA (D), TRBP (E to H) and PACT (I) by Western blotting with the corresponding specific antibodies. Blots were subsequently stripped and reprobed with antiactin antibodies to confirm equal protein loading. (E and F) TRBP levels in HEp-Q4 and HEp-Q5 cells were determined by densitometry and are plotted in arbitrary units, as ratios relative to the level of actin and to the level of TRBP in HEp-2 cells. In panel F the symbols correspond to TRBP levels determined in nine different experiments. (G) TRBP levels in HEp-2 cells transfected with pcDNA-TRBP (14) and in cells cotransfected with pcDNA-TRBP and siRNA-TRBP. (H) TRBP levels were compared in human IMR5 cells, HEpS31 (cl18) cells previously cured of persistent PV infection by growth at a supraoptimal temperature, and the control HEp-2 cell line. TRBP/actin densitometry and PACT/actin densitometry results are indicated in arbitrary units in the histograms below the corresponding Western blot results shown in panels H and I.Proteins (30 to 50 μg) from each cell line were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (10 to 20% Tricine gels; Invitrogen) and transferred to nitrocellulose membranes (Amersham Biosciences) as previously described (1). The membranes were incubated with one of the following primary antibodies (1): anti-Ago2 monoclonal antibody (MAb; Abcam), anti-RHA MAb (Abcam), and anti-TRBP2 MAb (Santa Cruz Biotechnology); rabbit antibodies against Dicer (Santa Cruz Biotechnology); anti-PACT MAb (Santa Cruz Biotechnology), and anti-Exportin 5 MAb (Abcam). The antiactin MAb (AC-40; Sigma-Aldrich) was used to check for equal protein loading. Membranes were then washed and treated with appropriate horseradish peroxidase-conjugated secondary antibodies (Amersham Biosciences) for 2 h at room temperature. Protein bands were detected with an enhanced chemiluminescence detection kit (ECL+; Amersham Biosciences) and a G:box (Syngene).Exportin 5, Dicer, Ago-2, and RHA were similarly abundant in all three cell lines (Fig. 4A to D), suggesting that quantitative differences in protein levels were unlikely to be responsible for the enhanced silencing in HEp-Q4 and -Q5 cells. There was significantly more TRBP in HEp-Q4 (≈21%; P = 0.026) and HEp-Q5 (≈28%; P = 0.016) cells than in HEp-2 cells, as indicated by the results of nine experiments (Fig. 4E and F). The specificity of the anti-TRBP antibody was checked on extracts of HEp-2 cells transfected with a plasmid encoding TRBP, pcDNA-TRBP (14), with and without silencing by siRNA-TRBP (Fig. (Fig.4G).4G). GFP silencing was not enhanced in HEp-2 cells overproducing TRBP, and it was not decreased by downregulating TRBP gene expression with siRNA-TRBP (data not shown). These results suggest that the high levels of TRBP in the cured cell lines are not the cause of the enhanced silencing in these cells.There was less TRBP protein in HEp-S31 (cl18) cells (2) than in HEp-2 and other control cells (IMR5) (Fig. (Fig.4H),4H), indicating that high levels of TRBP are not necessarily selected in cells persistently infected with PV. PACT was slightly downregulated in the cured cells (Fig. (Fig.4I).4I). Moreover, PACT is unlikely to be involved in the enhanced silencing in cured cells, because we used synthetic siRNAs and PACT functions principally during siRNA production by Dicer (14). We did not investigate the activities or subcellular distributions of the various factors involved in RNAi in the three cell lines, and they may differ. It is also possible that other factors, not tested here, contribute to the efficacy of siRNAs in cured cells. The molecular details of the mechanism involved remain to be determined.Overall, our results suggest that both a decrease in viral replication and the enhancement of gene silencing contributed to the mechanism by which cells persistently infected with poliovirus were cured by RNAi. Our results also indicate that cells displaying enhanced silencing may be selected during treatment with siRNAs. This may result in profound changes to cell phenotype, because RNAi plays an essential role in the regulation of cellular gene expression (15).  相似文献   
3.
We show that poliovirus (PV) infection induces an increase in cytosolic calcium (Ca2+) concentration in neuroblastoma IMR5 cells, at least partly through Ca2+ release from the endoplasmic reticulum lumen via the inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) channels. This leads to Ca2+ accumulation in mitochondria through the mitochondrial Ca2+ uniporter and the voltage-dependent anion channel (VDAC). This increase in mitochondrial Ca2+ concentration in PV-infected cells leads to mitochondrial dysfunction and apoptosis.Poliovirus (PV), the prototype member of the Picornaviridae family, is the etiological agent of paralytic poliomyelitis (26, 27). This acute human disease of the central nervous system results from the destruction of motor neurons associated with PV replication. In PV-infected mice, motor neurons die through apoptosis (16). However, the mechanisms involved are poorly understood (5).Apoptosis is an active cell death process triggered by various stimuli, including viral infections (18). This process leads to DNA fragmentation and is triggered by two main pathways (22): (i) the extrinsic pathway, mediated by the activation of cell surface death receptors such as Fas/CD95, and (ii) the intrinsic pathway, characterized notably by mitochondrial membrane permeabilization (MMP). In many models, this process implies a loss of mitochondrial transmembrane potential (Δψm) and the release of proapoptotic molecules, including cytochrome c, from the mitochondrial intermembrane space into the cytosol. The apoptotic program initiated by PV infection has been shown to involve mitochondrial dysfunction in several cell lines (2-4, 17).The intrinsic pathway also can originate from the endoplasmic reticulum (ER) (30). The ER participates in protein synthesis and folding, cellular responses to stress, and intracellular calcium (Ca2+) homeostasis. Nevertheless, under stress conditions, it may induce apoptosis via several different mechanisms, one of which involves ER cross-talk with mitochondria, mediated by Ca2+ release from ER stores through the inositol 1,4,5-triphosphate receptor (IP3R) and ryanodine receptor (RyR) channels (7, 12, 15). Several recent studies have identified Ca2+ signaling as a key cellular target for viral infection (for a review, see reference 8). Upon PV infection, cells display an increase in cytosolic Ca2+ concentration (20). Phospholipase C also is activated, leading to an increase in IP3 concentration in PV-infected cells (19), potentially accounting for the observed increase in cytosolic Ca2+ concentration. However, the role of Ca2+ efflux from the ER in PV-induced apoptosis has yet to be studied.Here, we postulated that an increase in cytosolic Ca2+ following PV infection can have an impact on cell fate and investigated the cellular response in terms of mitochondrial function and apoptosis in neuroblastoma IMR5 cells.  相似文献   
4.
It has been suggested that poliovirus (PV), the causative agent of poliomyelitis, could persist in surviving patients. We have previously shown that PV can persistently infect some human cell lines in vitro, particularly neuroblastoma cell lines. We report here an ex vivo model in which PV can persistently infect primary cultures of human fetal brain cells. Two mutations involving capsid residues 142 of VP2 and 95 of VP1 were repeatedly selected during the persistent infections. These residues are located in capsid regions known to be involved in interactions between PV and its receptor. During the first week after infection, viral antigens were found in cells of both the neuronal and glial lineages. In contrast, 2 weeks after infection, viral antigens were detected almost exclusively in cells of the neuronal lineage. They were detected predominantly in cells expressing a marker of early commitment to the neuronal lineage, MAP-5, particularly in neuroblasts. Viral antigens were also found in immature progenitors expressing a neuroepithelium marker, nestin, and in cells expressing a marker of postmitotic neurons, MAP-2. The presence of viral antigens in postmitotic neurons suggests that PV can persist in neurons of patients who have survived poliomyelitis.  相似文献   
5.
Rotaviruses are the leading cause of infantile viral gastroenteritis worldwide. Mature enterocytes of the small intestine infected by rotavirus undergo apoptosis, and their replacement by less differentiated dividing cells probably leads to defective absorptive function of the intestinal epithelium, which, in turn, contributes to osmotic diarrhea and rotavirus pathogenesis. Here we show that infection of MA104 cells by the simian rhesus rotavirus strain RRV induced caspase-3 activation, DNA fragmentation, and cleavage of poly(ADP-ribose) polymerase; all three phenomena are features of apoptosis. RRV induced the release of cytochrome c from mitochondria to the cytosol, indicating that the mitochondrial apoptotic pathway was activated. RRV infection of MA104 cells activated Bax, a proapoptotic member of the Bcl-2 family, as revealed by its conformational change. Most importantly, Bax-specific small interfering RNAs partially inhibited cytochrome c release in RRV-infected cells. Thus, mitochondrial dysfunction induced by rotavirus is Bax dependent. Apoptosis presumably leads to impaired intestinal functions, so our findings contribute to improving our understanding of rotavirus pathogenesis at the cellular level.  相似文献   
6.
Poliovirus mutants were selected during the persistent infection of human neuroblastoma cells. These viruses could establish secondary persistent infections in HEp-2 nonneural cells. We report the identification of a region of the genome of a persistent virus (S11) that was sufficient to confer to a recombinant virus the phenotype that causes persistent infection in HEp-2 cells. This region, between nucleotides 1148 and 3481, contained 11 missense mutations mapping exclusively in the genes of capsid proteins VP1 and VP2. Because recombinant viruses carrying only one of these two mutated genes were not able to cause persistent infection, it seems very probable that two or more mutations in these genes are required for expression of the phenotype that causes persistent infection.  相似文献   
7.
Poliovirus (PV) type 1 mutants selected in human neuroblastoma cells persistently infected (PVpi) with the wild-type Mahoney strain exhibited a mouse-neurovirulent phenotype. Four of the five substitutions present in the capsid proteins of a PVpi were demonstrated to extend the host range of the Mahoney strain to mice. These new mouse-neurovirulent determinants were located in the three-dimensional structure of the viral capsid; two of them (residues 142 of VP2 and 60 of VP3) were located in loops exposed at the surface of the protein shell, whereas the other two (residues 43 of VP1 and 62 of VP4) were located on the inside of the capsid. VP1 residue 43 and VP2 residue 142 substitutions were also selected in a PVpi derived from the attenuated Sabin strain. We suggest that the selective pressure of human neuroblastoma cell factor(s) involved in early steps of PV multiplication could be responsible for the arising of amino acid substitutions which confer adaptation to the mouse central nervous system to PV.  相似文献   
8.
9.
We studied the cotransfer and cointegration of several genes transfected into four cell lines of primate origin. Mouse thymidine-kinase-negative LM cells, which had been extensively studied previously, were used as a reference. We found that in monkey kidney Vero cells, on average between 3.5 and 6.0 kb of plasmid sequences was integrated per clone, while in the murine LM cell Une, 9–186 kb of exogenous DNA was integrated per clone. Transformed Vero clones which had integrated more than 6 kb of DNA did not integrate larger DNA fragments in a second transformation assay than had the parental Vero cells. We found that the efficiency of gene cointegration is similar in Vero, HeLa and GM4312A cells, the latter being deficient in the repair of UV-induced damage. The human hepatocarcinoma Hep G2 cells integrated on the average 2 kb more exogenous DNA than the three other primate cell Unes, which resulted in a 4–5 times higher efficiency of gene cointegration. Plasmid penetration and persistence in a free state between 24 h and two weeks after transfection was similar in Vero and LM cells. No major post-integration DNA rearrangement could be demonstrated after the isolation of Vero clones. These observations correlate the low efficiency of gene cointegration in some primate cell lines with a genomic recombination step or with rearrangements taking place during early cell divisions following integration  相似文献   
10.
Poliovirus (PV) is the causal agent of paralytic poliomyelitis, a disease that involves the destruction of motor neurons associated with PV replication. In PV-infected mice, motor neurons die through an apoptotic process. However, mechanisms by which PV induces cell death in neuronal cells remain unclear. Here, we demonstrate that PV infection of neuronal IMR5 cells induces cytochrome c release from mitochondria and loss of mitochondrial transmembrane potential, both of which are evidence of mitochondrial outer membrane permeabilization. PV infection also activates Bax, a proapoptotic member of the Bcl-2 family; this activation involves its conformational change and its redistribution from the cytosol to mitochondria. Neutralization of Bax by vMIA protein expression prevents cytochrome c release, consistent with a contribution of PV-induced Bax activation to mitochondrial outer membrane permeabilization. Interestingly, we also found that c-Jun NH(2)-terminal kinase (JNK) is activated soon after PV infection and that the PV-cell receptor interaction alone is sufficient to induce JNK activation. Moreover, the pharmacological inhibition of JNK by SP600125 inhibits Bax activation and cytochrome c release. This is, to our knowledge, the first demonstration of JNK-mediated Bax-dependent apoptosis in PV-infected cells. Our findings contribute to our understanding of poliomyelitis pathogenesis at the cellular level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号