排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
N Ellfolk M R?nnberg R Aasa L E Andréasson T V?nng?rd 《Biochimica et biophysica acta》1983,743(1):23-30
The oxidation-reduction potentials of the two c-type hemes of Pseudomonas aeruginosa cytochrome c peroxidase (ferrocytochrome c:hydrogen-peroxide oxidoreductase EC 1.11.1.5) have been determined and found to be widely different, about +320 and -330 mV, respectively. The EPR spectrum at temperatures below 77 K reveals only low-spin signals (gz 3.24 and 2.93), whereas optical spectra at room temperature indicate the presence of one high-spin and one low-spin heme in the enzyme. Optical absorption spectra of both resting and half-reduced enzyme at 77 K lack features of a high-spin compound. It is concluded that the heme ligand arrangement changes on cooling from 298 to 77 K with a concomitant change in the spin state. The active form of the peroxidase is the half-reduced enzyme, in which one heme is in the ferrous and the other in the ferric state (low-spin below 77 K with gz 2.84). Reaction of the half-reduced enzyme with hydrogen peroxide forms Compound I with the hemes predominantly in the ferric (gz 3.15) and the ferryl states. Compound I has a half-life of several seconds and is converted into Compound II apparently having a ferric-ferric structure, characterized by an EPR peak at g 3.6 with unusual temperature and relaxation behavior. Rapid-freeze experiments showed that Compound II is formed in a one-electron reduction of Compound I. The rates of formation of both compounds are consistent with the notion that they are involved in the catalytic cycle. 相似文献
5.
6.
7.
N Ellfolk M R?nnberg R Aasa L E Andréasson T V?nng?rd 《Biochimica et biophysica acta》1984,784(1):62-67
The anion-binding characteristics of resting and half-reduced Pseudomonas cytochrome c peroxidase (ferrocytochrome c-551: hydrogen peroxide oxidoreductase, EC 1.11.1.5) have been examined by EPR and optical spectroscopy with cyanide, azide and fluoride as ligands. The resting enzyme was found to be essentially inaccessible for ligation, which indicates that it has a closed conformation. In contrast, the half-reduced enzyme has a conformation in which the low-potential heme is easily accessible for ligands, a behavior parallel to that towards the substrate hydrogen peroxide (R?nnberg, M., Araiso, T., Ellfolk, N. and Dunford, H.B. (1981) Arch. Biochem. Biophys. 207, 197-204). Cyanide and azide caused distinct changes in the low-potential heme c moiety, and the gz values of the two low-spin derivatives were 3.14 and 3.22, respectively. Fluoride binds to the same heme, giving rise to a high-spin signal at g = 6. The dissociation constants of the anions differ widely from each other, the values for the cyanide, azide and fluoride being 23 microM, 2.5 mM and 0.13 M, respectively. In addition, a partial shift of the low-spin peak at g = 2.84 of the half-reduced species to 3.24 was observed even at low concentrations of fluoride. 相似文献
8.
9.
The EPR spectrum at 15 K of Pseudomonas cytochrome c peroxidase, which contains two hemes per molecule, is in the totally ferric form characteristic of low-spin heme giving two sets of g-values with gz 3.26 and 2.94. These values indicate an imidazole-nitrogen : heme-iron : methionine-sulfur and an imidazole-nitrogen : heme-iron : imidazole-nitrogen hemochrome structure, respectively. The spectrum is essentially identical at pH 6.0 and 4.6 and shows only a very small amount of high-spin heme iron (g 5--6) also at 77 K. Interaction between the two hemes is shown to exist by experiments in which one heme is reduced. This induces a change of the EPR signal of the other (to gz 2.83, gy 2.35 and gx 1.54), indicative of the removal of a histidine proton from that heme, which is axially coordinated to two histidine residues. If hydrogen peroxide is added to the partially reduced protein, its EPR signal is replaced by still other signals (gz 3.5 and 3.15). Only a very small free radical peak could be observed consistent with earlier mechanistic proposals. Contrary to the EPR spectra recorded at low temperature, the optical absorption spectra of both totally oxidized and partially reduced enzyme reveal the presence of high-spin heme at room temperature. It seems that a transition of one of the heme c moieties from an essentially high-spin to a low-spin form takes place on cooling the enzyme from 298 to 15 K. 相似文献
10.
Two forms of copper (II) in fungal laccase 总被引:4,自引:0,他引:4