首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有4条查询结果,搜索用时 906 毫秒
1
1.
Aims Recent work has identified a worldwide 'economics' spectrum of correlated leaf traits that mainly reflects the compromises between maximizing leaf longevity and short-term productivity. However, during the early stages of tree growth different species tend to exhibit a common strategy, because competition for soil water and nutrients forces the maximization of short-term productivity owing to the need for rapid growth during the most vulnerable part of the tree's life cycle. Accordingly, our aim here was to compare the variations that occur during ontogeny in the different leaf traits (morphology and leaf chemical composition) of several coexisting Mediterranean woody species differing in their leaf life spans and to test our hypothesis that tree species with a long leaf life span should exhibit larger shifts in leaf characteristics along ontogeny.Methods Six Mediterranean tree species differing in leaf life span, selected from three plots located in central-western Spain, were studied during three growth stages: seedlings, juveniles and mature trees. Leaf life span, leaf morphology (leaf area, dry weight, thickness and mass per unit area) and chemical composition (N and fibre concentrations) were measured in all six species. The magnitude of the ontogenetic changes in the different traits was estimated and related to the mean leaf longevity of the different species.Important findings Along ontogeny, strong changes were observed in all variables analysed. The early growth stages showed lower leaf thickness, leaf thickness and mass per unit area and N, cellulose and hemicellulose concentrations than mature trees, but a higher lignin content. However, these changes were especially marked in species with a longer leaf life span at maturity. Interspecific differences in leaf life span, leaf morphology and chemical composition were stronger at the mature stage than at the seedling stage. We conclude that greater plasticity and more intense strategy shifts along ontogeny are necessarily associated with long leaf life span. Our results thus provide a new aspect that should be incorporated into the analysis of the costs and benefits associated with the different strategies related to leaf persistence displayed by the different species. Accordingly, the intensity of the alterations in leaf traits among different growth stages should be added to the suite of traits that change along the leaf economics spectrum.  相似文献   
2.
The competitive equilibrium between deciduous and perennial species in a new scenario of climate change may depend closely on the productivity of leaves along the different seasons of the year and on the morphological and chemical adaptations required for leaf survival during the different seasons. The aim of the present work was to analyze such adaptations in the leaves of three evergreen species (Quercus ilex, Q. suber and Pinus pinaster) and their responses to between-site differences in the intensity of winter harshness. We explore the hypothesis that the harshness of winter would contribute to enhancing the leaf traits that allow them to persist under conditions of stress. The results revealed that as winter harshness increases a decrease in leaf size occurs in all three species, together with an increase in the content of nitrogen per unit leaf area and a greater leaf mass per unit area, which seems to be achieved only through increased thickness, with no associated changes in density. P. pinaster was the species with the most intense response to the harshening of winter conditions, undergoing a more marked thickening of its needles than the two Quercus species. Our findings thus suggest that lower winter temperatures involve an increase in the cost of leaf production of evergreen species, which must be taken into account in the estimation of the final cost and benefit balance of evergreens. Such cost increases would be more pronounced for those species that, like P. pinaster, show a stronger response to the winter cold.  相似文献   
3.
Changes in morphology [leaf dry mass per unit area (LMA), thickness and density] and chemical composition (macronutrients and fibres content) in different age leaves of eight evergreen Mediterranean woody species were investigated. LMA and leaf thickness increased with leaf age increasing. Young tissues possessed higher concentrations of N, P, K, and Mg and lower Ca concentrations on a dry mass basis. However, mineral content was independent of age on leaf area basis (except for Ca content) suggesting that the changes in mineral concentration with leaf ageing are due to dilution in the larger dry mass accumulated in the oldest leaves. Leaf tissue density (LTD) increased during the first year of the leaf life. Lignin and hemicellulose concentrations did not vary along leaf life and the cellulose concentration increased with leaf age in most species between the current-year and the one-year old leaves. Our results suggested that physical leaf reinforcement with a higher cellulose concentration and density might be a leaf response to the unfavourable climatic conditions during the first winter.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号