首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   7篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   3篇
  2010年   7篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1986年   1篇
排序方式: 共有57条查询结果,搜索用时 31 毫秒
1.
Abstract. The structure of dune ponds hygrophytic vegetation has a spatial organisation in belts around the pond basin, closely related to water level and flooding regime. Doñana National Park has an important representation of temporal dune ponds, which are subjected to rainfall fluctuations and may be suffering the impact of water extraction from the neighbouring tourist resort. Permanent transects in a vegetation complex of five dune ponds have been monitored during a eight year period (1990-1997). This period was characterised by a number of dry years (annual rainfall around 300 mm), located between two wet cycles (800-900 mm). Transects were analysed in 1990 (wet period), 1994 (dry) and 1997 (wet) by hierarchical agglomera-tive clustering. During the dry period hygrophytic species showed regression, with a high mortality of some species like Ulex minor, while the xerophytic species advanced to lower areas. Seedlings of some xerophytic species colonised the dry surface of the pond basin. The lowering of the water table varied in the different ponds, ranging from 312 to 190 cm depending on topography and the distance to the pumping area. The new period of flooding during 1995-96 and 1996-97 cycles provided the opportunity for hygrophytic spe cies to re-establish themselves in their original places. This study suggest that changes in vegetation are caused by the interaction between weather conditions and human disturbance (water extractions). In our example man-made disturbance is more marked during the dry periods while wet periods tend to obscure the effects of water extractions. From a management perspective, long-term monitoring of water table and vegetation structure is revealed as a key procedure to the management of land-water ecotones on pressured areas and threatened habitats.  相似文献   
2.
Linkage of cystic fibrosis (CF) to DNA and classical markers was studied in 36 families of two or three generations with at least two living affected children. Among the 79 affected children, no recombinants were detected between the disease and the markers MET and pJ3.11, previously shown to be linked to CF. No linkage between the human trypsin gene family (which appears to include at least 10 members) and CF was found, although not all genes of the trypsin family have been screened yet. In one of the CF families, recombination between MET and pJ3.11 was detected in an unaffected sib. Data from our families suggest that the gene order of markers among chromosome 7q is: (7cen;p8.33)collagen(COL1A2);DOCR1-917;paraoxonase+ ++(PON);(MET-cf-J3.11);T-cell receptor beta chain (TCRB);qter. There was no evidence for (or against) either postzygotic selection or meiotic drive to explain the high frequency of CF in Caucasian populations.  相似文献   
3.
Reconstructions of the human-African great ape phylogeny by using mitochondrial DNA (mtDNA) have been subject to considerable debate. One confounding factor may be the lack of data on intraspecific variation. To test this hypothesis, we examined the effect of intraspecific mtDNA diversity on the phylogenetic reconstruction of another Plio- Pleistocene radiation of higher primates, the fascicularis group of macaque (Macaca) monkey species. Fifteen endonucleases were used to identify 10 haplotypes of 40-47 restriction sites in M. mulatta, which were compared with similar data for the other members of this species group. Interpopulational, intraspecific mtDNA diversity was large (0.5%- 4.5%), and estimates of divergence time and branching order incorporating this variation were substantially different from those based on single representatives of each species. We conclude that intraspecific mtDNA diversity is substantial in at least some primate species. Consequently, without prior information on the extent of genetic diversity within a particular species, intraspecific variation must be assessed and accounted for when reconstructing primate phylogenies. Further, we question the reliability of hominoid mtDNA phylogenies, based as they are on one or a few representatives of each species, in an already depauperate superfamily of primates.   相似文献   
4.
Argania spinosa (the argan tree) is a slow-growing tree endemic of Morocco, growing on semi-arid areas where no other tree species can live. With the aim of predicting temporal changes in A. spinosa woodlands under a probable increase in aridity, we set off to investigate these questions: how do A. spinosa physiological attributes respond to variations in climatic conditions and seasonality, and which is the set of attributes that most affects tree response to environmental conditions? In three study sites, Beni Snassen (North), High-Atlas (Mountain) and Admine Forest in Agadir (Coastal), gas exchange measurements, photochemical efficiency, leaf water potential and different leaf attributes were monitored in February, July and November of 2006. The Mountain site presents the most continental climate. Trees in this site were the most stressed in summer, having the lowest midday leaf water potential values, photochemical efficiency and assimilation rates. We found a Ψmd threshold around -4 MPa, below which stomatal conductance responds linearly to Ψmd. Plants from the North area never reached this threshold during the study period. Although leaf pigments presented a clear seasonal pattern, leaves from Coastal trees exhibit the highest content for each season. The three study sites were separated by two discriminate functions obtained by canonical discriminant analysis. In summer, the Mountain population is separated from the other sites mainly by assimilation rate and Fv/Fm, while in winter transpiration rates and chlorophyll content are the main discriminant variables. Our study shows that A. spinosa trees adjust their physiological status and leaf attributes to environmental conditions allowing plants to thrive under a dry climate. Under a scenario of global change, the distribution of the argan tree likely shifts to milder areas.  相似文献   
5.
Conjugative systems contain an essential integral membrane protein involved in DNA transport called the Type IV coupling protein (T4CP). The T4CP of conjugative plasmid R388 is TrwB, a DNA-dependent ATPase. Biochemical and structural data suggest that TrwB uses energy released from ATP hydrolysis to pump DNA through its central channel by a mechanism similar to that used by F1-ATPase or ring helicases. For DNA transport, TrwB couples the relaxosome (a DNA-protein complex) to the secretion channel. In this work we show that TrwA, a tetrameric oriT DNA-binding protein and a component of the R388 relaxosome, stimulates TrwBDeltaN70 ATPase activity, revealing a specific interaction between the two proteins. This interaction occurs via the TrwA C-terminal domain. A 68-kDa complex between TrwBDeltaN70 and TrwA C-terminal domain was observed by gel filtration chromatography, consistent with a 1:1 stoichiometry. Additionally, electron microscopy revealed the formation of oligomeric TrwB complexes in the presence, but not in the absence, of TrwA protein. TrwBDeltaN70 ATPase activity in the presence of TrwA was further enhanced by DNA. Interestingly, maximal ATPase rates were achieved with TrwA and different types of dsDNA substrates. This is consistent with a role of TrwA in facilitating the interaction between TrwB and DNA. Our findings provide a new insight into the mechanism by which TrwB recruits the relaxosome for DNA transport. The process resembles the mechanism used by other DNA-dependent molecular motors, such as the RuvA/RuvB system, to be targeted to the DNA followed by hexamer assembly.  相似文献   
6.
The conjugative coupling protein TrwB is responsible for connecting the relaxosome to the type IV secretion system during conjugative DNA transfer of plasmid R388. It is directly involved in transport of the relaxase TrwC, and it displays an ATPase activity probably involved in DNA pumping. We designed a conjugation assay in which the frequency of DNA transfer is directly proportional to the amount of TrwB. A collection of point mutants was constructed in the TrwB cytoplasmic domain on the basis of the crystal structure of TrwBΔN70, targeting the nucleotide triphosphate (NTP)-binding region, the cytoplasmic surface, or the internal channel in the hexamer. An additional set of transfer-deficient mutants was obtained by random mutagenesis. Most mutants were impaired in both DNA and protein transport. We found that the integrity of the nucleotide binding domain is absolutely required for TrwB function, which is also involved in monomer-monomer interactions. Polar residues surrounding the entrance and inside the internal channel were important for TrwB function and may be involved in interactions with the relaxosomal components. Finally, the N-terminal transmembrane domain of TrwB was subjected to random mutagenesis followed by a two-hybrid screen for mutants showing enhanced protein-protein interactions with the related TrwE protein of Bartonella tribocorum. Several point mutants were obtained with mutations in the transmembranal helices: specifically, one proline from each protein may be the key residue involved in the interaction of the coupling protein with the type IV secretion apparatus.Bacterial conjugation can be viewed mechanistically as a rolling-circle replication system linked to a type IV secretion process. The two processes come into contact through the activity of a protein that couples the plasmid replication machinery to the export system in the membrane, allowing horizontal dissemination of the replicating DNA molecule (35). This key protein is called “coupling protein” (here “T4CP” for “type IV CP”). It is present in all conjugative systems as well as in many type IV secretion systems (T4SS) involved in bacterial virulence (16). The secreted substrate in bacterial conjugation is the relaxase or pilot protein, attached to the DNA strand. The shoot-and-pump model for bacterial conjugation proposes that, after secretion of the protein through the T4SS, the T4CP works as a motor for export of the rest of the DNA molecule (36). In addition to its presumed role as a DNA transporter, TrwB is also required for transport of relaxase TrwC in the absence of DNA transfer (15).In accordance with its proposed coupling activity, early genetic experiments made patent that the function of conjugative T4CPs depended on interactions with both the cytoplasmic substrate complex (the relaxosome) and the T4SS (6, 7). Thus, T4CP interactions with other conjugation proteins are a key aspect of their function. There have been several reports of interactions between T4CPs from conjugative plasmids and either relaxosomal components—such as F-TraD with TraM (14, 38), RP4-TraG with TraI (49), and pCF10-PcfC with PcfF and PcfG (11)—or T4SS components such as R27-TraG with TrhB (17). T4CP-T4SS interactions have also been reported for the VirB/D4 T4SS involved in DNA transfer from Agrobacterium tumefaciens to plant cells (1, 9). Both sets of interactions have only been concurrently shown for TrwB, the T4CP of plasmid R388. TrwB interacts with proteins TrwA and TrwC, which form the R388 relaxosome, and with the R388 T4SS component TrwE (37). While the interaction with the relaxosome is highly specific for its cognate system (24, 37, 48), the interaction between the T4CP and the T4SS is less specific: a single T4CP can interact functionally with several conjugative T4SS. Interestingly, a correlation was observed between the strength of the T4CP-TrwE-like interaction and the efficiency of DNA transfer (37). T4CPs also interact with TrwE-like components of T4SS involved in virulence (13). In the case of the highly related Trw T4SS systems of plasmid R388 and the human pathogen Bartonella, it was further demonstrated that R388 TrwE could be functionally replaced by the Bartonella tribocorum TrwE homolog, TrwEBt (13).T4CPs are integral membrane proteins anchored to the inner membrane by an N-terminal transmembrane domain (TMD). The soluble cytoplasmic domain of TrwB (TrwBΔN70), lacking this TMD, has been biochemically and structurally analyzed in detail. It retains the ability to bind NTPs and to unspecifically bind DNA (42). The characterization of its DNA-dependent ATPase activity (53) strengthened the possibility that T4CPs work as DNA motors. This activity is also stimulated by the oriT-binding protein TrwA (52).The determination of the three-dimensional (3D) structure of TrwBΔN70 indicated a quaternary structure consisting of hexamers that form an almost spherical, orange-shaped structure with a 20-Å inner channel (ICH) (18, 19). Each monomer is composed of two main structural domains: the nucleotide-binding domain (NBD) and the all-alpha domain (AAD). The NBD has α/β topology and is reminiscent of RecA and DNA ring helicases. The AAD is facing the cytoplasmic side and bears significant structural similarity to the N-terminal domain of site-specific recombinase XerD and also to a 40-residue segment of the DNA binding domain of protein TraM, the component of the relaxosome of F-like plasmids that interacts with its cognate T4CP, TraD. The structure of the hexamer as a whole resembles that of the F1-ATPase, raising interesting perspectives into the possible way of action of coupling proteins as molecular motors in conjugation (5).There have been several attempts to functionally dissect T4CPs. In F-TraD, it was determined that its C terminus is essential for relaxosomal specificity, probably through an interaction with TraM (4, 39, 48). The cytoplasmic domain of the related TraD protein of plasmid R1 stimulates both transesterase and helicase activities of its cognate relaxase, TraI (41, 51). A series of random mutations were shown to affect TraD oligomerization (23). In VirD4, the T4CP of the VirB T4SS of A. tumefaciens, both the periplasmic domain plus key residues of the NBD are required for its location at the cell poles (31); its interaction with the T4SS protein substrate VirE2 does not require the N-terminal TMD (2). Mutational analysis of R27 TraG showed that the periplasmic residues are essential for interaction with the T4SS (22). An N-terminal deletion variant of PcfC, the T4CP of the Enterococcus plasmid pCF10, loses its membrane localization but retains its ability to bind relaxosomal components (11). Biochemical analysis of full-length R388 TrwB showed that the N-terminal TMD stabilizes the protein, aids oligomerization, and affects nucleotide selection (25-27). This region is essential for T4SS interaction, but TrwBΔN70 retains the ability to interact with the relaxosomal components TrwA and TrwC (37). Taken together, these analyses suggested that the N-terminal TMD of the T4CPs is necessary for T4SS interaction, oligomerization, and cellular location and that the C-terminal cytoplasmic domain is necessary for relaxosomal interactions and ATPase activity associated with DNA transport.In this study, we set up different assays to search for mutants affecting TrwB function in DNA and protein transfer. We constructed a series of TrwB point mutants based on the 3D structure of TrwBΔN70. Most selected residues were essential for TrwB function in conjugation, especially under conditions where TrwB was in limiting quantities. We analyzed the in vivo properties of selected mutants with a battery of in vivo assays to map functional domains. Also, random mutants in the TMD were screened for improved interactions with the T4SS, which allowed mapping of the TrwB-TrwE interaction domain.  相似文献   
7.
8.
Abstract. This study attempts to show the dynamics of the canopy structure of the Mediterranean pioneer shrub Lavandula stoechas after man-made perturbation (i.e. grazing). The development of the vertical structure of the shrub was studied by harvesting the canopy of plants of 2–6 yr old in horizontal layers. The supportive biomass of the canopy was concentrated near the base at all ages. Leaf biomass was evenly distributed all over the vertical profile in 2- and 3-yr old plants. In 4-yr old plants it presented a maximum near the top of the canopy. For 5-yr old plants a structural transition started with leaf profiles showing a bimodal distribution. Leaf biomass predominated near the base in 6-yr old plants, suggesting that the transition was completed. Three canopy stages in the growth processes of the plant were recognized after the first year of growth: in the first one (from 2 to 3 yr old) both leaf and supportive biomass increased; in the second one (from 3 to 4 yr) leaf biomass remained stable and there was an increase in supportive biomass until the plants reached a ‘mature stage’, in 4-yr old plants; finally, in 5- and 6-yr old plants there was a decrease both in leaf and supportive biomass and plant structure showed evidence of senescence. Early transitions from seedling to 1-yr old plant and from this to 2- to 3-yr old plants were less obvious. The leaf/supportive biomass ratio always decreased with plant age, from 1.88 in seedlings to 0.01 in 6-yr old plants. Biomass density followed the pattern of supportive biomass, with an increase from 1.7 g/dm3 (2-yr old plants) to 2.4 g/dm3 (4-yr old plants). Thereafter, biomass density decreased to 0.6 g/dm3 (6-yr old plants).  相似文献   
9.
Type IV secretion systems (T4SS) mediate the transfer of DNA and protein substrates to target cells. TrwK, encoded by the conjugative plasmid R388, is a member of the VirB4 family, comprising the largest and most conserved proteins of T4SS. In a previous work we demonstrated that TrwK is able to hydrolyze ATP. Here, based on the structural homology of VirB4 proteins with the DNA-pumping ATPase TrwB coupling protein, we generated a series of variants of TrwK where fragments of the C-terminal domain were sequentially truncated. Surprisingly, the in vitro ATPase activity of these TrwK variants was much higher than that of the wild-type enzyme. Moreover, addition of a synthetic peptide containing the amino acid residues comprising this C-terminal region resulted in the specific inhibition of the TrwK variants lacking such domain. These results indicate that the C-terminal end of TrwK plays an important regulatory role in the functioning of the T4SS.  相似文献   
10.

Background

This study examines the associations between lifecourse adversity and physical performance in old age in different societies of North and South America and Europe.

Methods

We used data from the baseline survey of the International Study of Mobility in Aging, conducted in: Kingston (Canada), Saint-Hyacinthe (Canada), Natal (Brazil), Manizales (Colombia) and Tirana (Albania). The study population was composed of community dwelling people between 65 and 74 years of age, recruiting 200 men and 200 women at each site. Physical Performance was assessed with the Short Physical Performance Battery (SPPB). Economic and social adversity was estimated from childhood adverse events, low education, semi-skilled occupations during adulthood and living alone and insufficient income in old age.

Results

A total of 1995 people were assessed. Low physical performance was associated with childhood social and economic adversity, semi-skilled occupations, living alone and insufficient income. Physical performance was lower in participants living in Colombia, Brazil and Albania than in Canada counterparts, despite adjustment for lifecourse adversity, age and sex.

Conclusions

We show evidence of the early origins of social and economic inequalities in physical performance during old age in distinct populations and for the independent and cumulative disadvantage of low socioeconomic status during adulthood and poverty and living alone in later life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号