首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
  2022年   5篇
  2021年   6篇
  2020年   1篇
  2019年   7篇
  2018年   1篇
  2016年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy(CADASIL)is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation.However,the underlying cellular and molecular mechanisms remain unidentified.Here,we generated non-integrative induced pluripotent stem cells(iPSCs)from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation(c.3226C>T,p.R1076C).Vascular smooth muscle cells(VSMCs)differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes,including activation of the NOTCH and NF-kB signaling pathway,cytoskeleton disorganization,and excessive cell proliferation.In comparison,these abnormalities were not observed in vascular endothelial cells(VECs)derived from the patients iPSCs.Importantly,the abnormal upregulation of NF-kB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor,providing a potential therapeutic strategy for CADASIL.Overall,using this iPSCbased disease model,our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.  相似文献   
2.
3.
4.
5.
Aging is a major risk factor for many diseases,especially in highly prevalent cardiopulmonary comorbidities and infectious diseases including Coronavirus Diseas...  相似文献   
6.
7.
Werner syndrome (WS) is a premature aging disorder that mainly affects tissues derived from mesoderm. We have recently developed a novel human WS model using WRN-deficient human mesenchymal stem cells (MSCs). This model recapitulates many phenotypic features of WS. Based on a screen of a number of chemicals, here we found that Vitamin C exerts most efficient rescue for many features in premature aging as shown in WRN-deficient MSCs, including cell growth arrest, increased reactive oxygen species levels, telomere attrition, excessive secretion of inflammatory factors, as well as disorganization of nuclear lamina and heterochromatin. Moreover, Vitamin C restores in vivo viability of MSCs in a mouse model. RNA sequencing analysis indicates that Vitamin C alters the expression of a series of genes involved in chromatin condensation, cell cycle regulation, DNA replication, and DNA damage repair pathways in WRNdeficient MSCs. Our results identify Vitamin C as a rejuvenating factor for WS MSCs, which holds the potential of being applied as a novel type of treatment of WS.  相似文献   
8.
9.
10.
Acute lung injury (ALI) is an important cause of mortality of patients with sepsis, shock, trauma, pneumonia, multiple transfusions and pancreatitis. Physalis alkekengi L. var. franchetii (Mast.) Makino (PAF) has been extensively used in Chinese folk medicine because of a good therapeutic effect in respiratory diseases. Here, an integrated approach combining network pharmacology, proton nuclear magnetic resonance‐based metabolomics, histopathological analysis and biochemical assays was used to elucidate the mechanism of PAF against ALI induced by lipopolysaccharide (LPS) in a mouse model. We found that the compounds present in PAF interact with 32 targets to effectively improve the damage in the lung undergoing ALI. We predicted the putative signalling pathway involved by using the network pharmacology and then used the orthogonal signal correction partial least‐squares discriminant analysis to analyse the disturbances in the serum metabolome in mouse. We also used ELISA, RT‐qPCR, Western blotting, immunohistochemistry and TUNEL assay to confirm the potential signalling pathways involved. We found that PAF reduced the release of cytokines, such as TNF‐α, and the accumulation of oxidation products; decreased the levels of NF‐κB, p‐p38, ERK, JNK, p53, caspase‐3 and COX‐2; and enhanced the translocation of Nrf2 from the cytoplasm to the nucleus. Collectively, PAF significantly reduced oxidative stress injury and inflammation, at the same time correcting the energy metabolism imbalance caused by ALI, increasing the amount of antioxidant‐related metabolites and reducing the apoptosis of lung cells. These observations suggest that PAF may be an effective candidate preparation alleviating ALI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号