首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   4篇
  159篇
  2024年   2篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2017年   6篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   9篇
  2012年   14篇
  2011年   12篇
  2010年   3篇
  2009年   7篇
  2008年   8篇
  2007年   4篇
  2006年   7篇
  2005年   4篇
  2004年   6篇
  2003年   8篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1977年   2篇
  1972年   1篇
  1966年   1篇
  1962年   1篇
  1961年   3篇
排序方式: 共有159条查询结果,搜索用时 0 毫秒
1.
2.
A variety of methods have been described for making synthetic polynucleotide microarrays. These include in situ synthesis directly on the array surface, for example, by photolithography or ink-jet printing technologies, and the application of presynthesized polynucleotides that are derivatized with various nucleophiles or electrophiles. In the latter case, a variety of surface chemistries have been developed, and several are available commercially. These chemistries must be compatible with nanoliter-scale volumes of polynucleotide reagents, which contact the array over a small portion of their surface. We reasoned that a three-dimensional polymer coating could potentially offer greater surface contact and higher binding efficiency. Here we describe a polyethylenimine-based coating chemistry that provides exceptional binding and hybridization characteristics. In our preferred process, size-fractionated polyethylenimine polymers are cross-linked onto an aminopropylsilanated glass surface in the presence of cyanuric chloride. The resulting three-dimensional coating binds polynucleotides through a mixture of covalent and noncovalent interactions as evidenced by comparisons between 5'-aminoalkyl modified and unmodified polynucleotides. Binding and hybridization comparisons are presented including analogous two-dimensional electrophilic and electrostatic chemistries.  相似文献   
3.
4.
    
Thus far plastid transformation in higher plants has been based on incorporation of foreign DNA in the plastid genome by the plastid's homologous recombination machinery. We report here an alternative approach that relies on integration of foreign DNA by the phiC31 phage site-specific integrase (INT) mediating recombination between bacterial and phage attachment sites (attB and attP, respectively). Plastid transformation by the new approach depends on the availability of a recipient line in which an attB site has been incorporated in the plastid genome by homologous recombination. Plastid transformation involves insertion of an attP vector into the attB site by INT and selection of transplastomic clones by selection for antibiotic resistance carried in the attP plastid vector. INT function was provided by either expression from a nuclear gene, which encoded a plastid-targeted INT, or expressing INT transiently from a non-integrating plasmid in plastids. Transformation was successful with both approaches using attP vectors with kanamycin resistance or spectinomycin resistance as the selective marker. Transformation efficiency in some of the stable nuclear INT lines was as high as 17 independently transformed lines per bombarded sample. As this system does not rely on the plastid's homologous recombination machinery, we expect that INT-based vectors will make plastid transformation a routine in species in which homologous recombination rarely yields transplastomic clones.  相似文献   
5.
  总被引:28,自引:0,他引:28  
We report on a novel chimeric gene that confers kanamycin resistance on tobacco plastids. The kan gene from the bacterial transposon Tn5, encoding neomycin phosphotransferase (NPTII), was placed under control of plastid expression signals and cloned between rbcL and ORF512 plastid gene sequences to target the insertion of the chimeric gene into the plastid genome. Transforming plasmid pTNH32 DNA was introduced into tobacco leaves by the biolistic procedure, and plastid transformants were selected by their resistance to 50 g/ml of kanamycin monosulfate. The regenerated plants uniformly transmitted the transplastome to the maternal progeny. Resistant clones resulting from incorporation of the chimeric gene into the nuclear genome were also obtained. However, most of these could be eliminated by screening for resistance to high levels of kanamycin (500 g/ml). Incorporation of kan into the plastid genome led to its amplification to a high copy number, about 10000 per leaf cell, and accumulation of NPTII to about 1% of total cellular protein.  相似文献   
6.
The major allergens of honeybee venom, hyaluronidase (Hyal) and phospholipase A2, can induce life-threatening IgE-mediated allergic reactions in humans. Although conventional immunotherapy is effective, up to 40% of patients develop allergic side effects including anaphylaxis and thus, there is a need for an improved immunotherapy. A murine monoclonal anti-Hyal IgG1 antibody (mAb 21E11), that competed for Hyal binding with IgEs from sera of bee venom allergic patients, was raised. The fragment of these IgG antibodies which bind to antigen (Fab) was produced and complexed (1:1) with Hyal. The crystal structure determination of Hyal/Fab 21E11 complex (2.6 A) enabled the identification of the Hyal-IgG interface which provides indirect information on the Hyal-IgE interaction (B-cell epitope). The epitope is composed of a linear array of nine residues (Arg138, His141-Arg148) located at the tip of a helix-turn-helix motive which protrudes away from the globular core and fits tightly into the deep surface pocket formed by the residues from the six complementarity determining regions (CDRs) of the Fab. The epitope is continuous and yet its conformation appears to be essential for Ab recognition, since the synthetic 15-mer peptide comprising the entire epitope (Arg138-Glu152) is neither recognized by mAb 21E11 nor by human IgEs. The structure of the complex provides the basis for the rational design of Hyal derivatives with reduced allergenic activity, which could be used in the development of safer allergen-specific immunotherapy.  相似文献   
7.
8.
Samples of malformed and healthy panicles of mango (Mangifera indica L.) as well as leaves and shoots bearing them were collected at different stages of development (fully swollen buds, bud inception, fully grown panicles prior to full bloom and at full bloom) over two consecutive years and were analysed for their macro- and micronutrient status. In addition, malformed and healthy seedlings were collected and analysed. Malformed panicles were found to be significantly higher in N at all the developmental stages except at bud inception. Phosphorus and K also tended to accumulate in malformed panicles at later stages of their development. In general, malformed panicles exhibited lower levels of P, K and Ca than healthy panicles. The differences in levels of Mg and S in malformed and healthy panicles were not significant. All micronutrients were in much lower concentrations in malformed panicles except for Mn which appears to accumulate in malformed panicles particularly at the early stages of development. The leaves on the shoots bearing malformed panicles also showed a tendency to accumulate N, while P, Mg and S were always higher in leaves on shoots bearing healthy panicles. The leaves on shoots bearing healthy panicles had lower levels of Fe, Cu and Mn, whereas levels of Zn and B tended to be higher in leaves on shoots bearing malformed panicles. The nutrient concentration differences between the two kinds of shoots were generally nonsignificant (P=0.05), except for K and S which were significantly lower in shoots bearing malformed panicles. The shoots bearing malformed panicles showed significantly (P=0.05) higher levels of almost all nutrients compared with shoots bearing healthy panicles. Vegetative malformation was found to be associated significantly (p=0.05) with higher amounts of all nutrients except Ca which was significantly higher in healthy seedlings. The present study, therefore, seems to point to lower Ca as one of the pre-disposing factors causing malformation in mango.A part of Ph.D. thesis of the senior author.A part of Ph.D. thesis of the senior author.  相似文献   
9.
    
The Seychelles magpie-robin's (SMR) five island populations exhibit some of the lowest recorded levels of genetic diversity among endangered birds, and high levels of inbreeding. These populations collapsed during the 20th century, and the species was listed as Critically Endangered in the IUCN Red List in 1994. An assisted translocation-for-recovery program initiated in the 1990s increased the number of mature individuals, resulting in its downlisting to Endangered in 2005. Here, we explore the temporal genomic erosion of the SMR based on a dataset of 201 re-sequenced whole genomes that span the past ~150 years. Our sample set includes individuals that predate the bottleneck by up to 100 years, as well as individuals from contemporary populations established during the species recovery program. Despite the SMR's recent demographic recovery, our data reveal a marked increase in both the genetic load and realized load in the extant populations when compared to the historical samples. Conservation management may have reduced the intensity of selection by increasing juvenile survival and relaxing intraspecific competition between individuals, resulting in the accumulation of loss-of-function mutations (i.e. severely deleterious variants) in the rapidly recovering population. In addition, we found a 3-fold decrease in genetic diversity between temporal samples. While the low genetic diversity in modern populations may limit the species' adaptability to future environmental changes, future conservation efforts (including IUCN assessments) may also need to assess the threats posed by their high genetic load. Our computer simulations highlight the value of translocations for genetic rescue and show how this could halt genomic erosion in threatened species such as the SMR.  相似文献   
10.
Summary Callus ofNicotiana tabacum SRI, a mutant with maternally inherited streptomycin resistance, was induced from leaf sections. Callus pieces were mutagenised with N-ethyl-N-nitrosourea and inoculated onto a shoot-induction medium on which calli are normally green. White callus sectors were observed in the mutagenised cultures, and white and variegated shoots were regenerated from these sectored calli. The SR1-A10 line regenerated a chimeric shoot with white leaf margins. The chimeric shoot was grafted onto a normal green rootstock, grown into a flowering plant in the greenhouse, and crosses were made. The SRI-A15 line was crossed using flowers formed on albino plants grown in sterile culture. Pigment deficiency was maternally inherited in both lines. Physical mapping of the chloroplast genome of the SR1-A15 mutant by SalI, PstI and BamHI restriction endonucleases did not reveal any difference between the SR1-A15 and the parental SRI chloroplast genomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号