首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
  2024年   1篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
排序方式: 共有20条查询结果,搜索用时 480 毫秒
1.
Flagellation in archaea is widespread and is involved in swimming motility. Here, we demonstrate that the structural flagellin gene from the crenarchaeaon Sulfolobus solfataricus is highly expressed in stationary-phase-grown cells and under unfavorable nutritional conditions. A mutant in a flagellar auxiliary gene, flaJ, was found to be nonmotile. Electron microscopic imaging of the flagellum indicates that the filaments are composed of right-handed helices.  相似文献   
2.
The deadliest type of skin cancer, malignant melanoma, is also the reason for the majority of skin cancer-related deaths. The objective of this article was to investigate the efficiency of free caffeic acid phenethyl ester (CAPE) and liposomal CAPE in inducing apoptosis in melanoma cells (A375) in in vitro. CAPE was loaded into liposomes made up of hydrogenated soybean phosphatidylcholine, cholesterol, and 1,2-distearoyl-sn-glycero-3 phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000], and their physicochemical properties were assessed. (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was performed for comparing the cytotoxicity of free CAPE and liposomal CAPE at dosages of 10, 15, 25, 50, 75 and the highest dose of 100 μg/mL for period of 24 and 48 h on A375 cell line to calculate IC50. Apoptosis and necrosis were evaluated in A375 melanoma cancer cells using flow cytometry. Atomic force microscopy was utilized to determine the nanomechanical attributes of the membrane structure of A375 cells. To determine whether there were any effects on apoptosis, the expression of PI3K/AKT1 and BAX/BCL2 genes was analyzed using the real-time polymerase chain reaction technique. According to our results, the maximum amount of drug release from nanoliposomes was determined to be 91% and the encapsulation efficiency of CAPE in liposomes was 85.24%. Also, the release of free CAPE was assessed to be 97%. Compared with liposomal CAPE, free CAPE showed a greater effect on reducing the cancer cell survival after 24 and 48 h. Therefore, IC50 values of A375 cells treated with free and liposomal CAPE were calculated as 47.34 and 63.39 μg/mL for 24 h. After 48 h of incubation of A375 cells with free and liposomal CAPE, IC50 values were determined as 30.55 and 44.83 μg/mL, respectively. The flow cytometry analysis revealed that the apoptosis induced in A375 cancer cells was greater when treated with free CAPE than when treated with liposomal CAPE. The highest nanomechanical changes in the amount of cell adhesion forces, and elastic modulus value were seen in free CAPE. Subsequently, the greatest decrease in PI3K/AKT1 gene expression ratio occurred in free CAPE.  相似文献   
3.
4.
Camel single-domain antibody fragments or Nanobodies, are practical in a wide range of applications. Their unique biochemical and biophysical properties permit an intracellular expression and antigen targeting. The availability of an efficient intracellular selection step would immediately identify the best intracellularly performing functional antibody fragments. Therefore, we assessed a bacterial-two-hybrid system to retrieve such Nanobodies. With GFP as an antigen we demonstrate that antigen-specific Nanobodies of sub-micromolar affinity and stability above 30kJ/mol, at a titer of 10(-4) can be retrieved in a single-step selection. This was further proven practically by the successful recovery from an 'immune' library of multiple stable, antigen-specific Nanobodies of good affinity for HIV-1 integrase or nucleoside hydrolase. The sequence diversity, intrinsic domain stability, antigen-specificity and affinity of these binders compare favorably to those that were retrieved in parallel by phage display pannings.  相似文献   
5.
Attachment of microorganisms to surfaces is a prerequisite for colonization and biofilm formation. The hyperthermophilic crenarchaeote Sulfolobus solfataricus was able to attach to a variety of surfaces, such as glass, mica, pyrite, and carbon-coated gold grids. Deletion mutant analysis showed that for initial attachment the presence of flagella and pili is essential. Attached cells produced extracellular polysaccharides containing mannose, galactose, and N-acetylglucosamine. Genes possibly involved in the production of the extracellular polysaccharides were identified.In microbiology, organisms are isolated from their natural habitats and typically cultivated in the laboratory as planktonic species. Though this method has been essential for understanding the concept of life, it remains unclear how microbial ecosystems operate. For bacteria, it is well known that they are able to form large cellular communities with highly complex cellular interactions and symbioses between different microbial or eukaryotic species. Biofilm formation is an essential component of such communities, and studies have shown that bacteria within biofilms are physiologically different from planktonic ones (20, 21). They can exhibit extensive networks of pili on their surfaces and produce and secrete extracellular polysaccharides (EPS), their growth rate is decreased, and cells are much more resistant to physical stresses and antibiotics (19).The study of surface colonization and cellular communities of archaea is crucial for understanding their ecological properties. The only detailed study showed that the hyperthermophilic organism Archaeoglobus fulgidus produced biofilms when challenged with heavy metals and pentachlorophenol (10). Pyrococcus furiosus was able to adhere to different surfaces, such as mica and carbon-coated gold grids, and cells were connected via cable-like bundles of flagella (12). Methanopyrus kandleri was shown to adhere to glass, but P. furiosus could colonize only by attaching to M. kandleri cells, using flagella and direct cell contacts (16).Here we report on the function of cell surface appendages in initial attachment to surfaces of archaea, using directed gene inactivation mutants. The crenarchaeote Sulfolobus solfataricus P2 is a thermoacidophile which grows optimally at 80°C and pH values of 2 to 4 (22). S. solfataricus possesses cell surface structures such as flagella and UV-induced pili (1, 2). The flagellum operon of S. solfataricus encodes, in addition to the structural subunit FlaB, four proteins of unknown function, the ATPase FlaI, and the only integral membrane protein, FlaJ. Previously, we isolated a ΔflaJ mutant which was nonflagellated and had lost its ability for surface motility on Gelrite plates (17). Recently, we described UV-inducible pili in S. solfataricus that directed cellular aggregation after UV stress (8). Deletion of the central ATPase UpsE, responsible for pilus assembly, rendered cells devoid of pili and defective in cellular aggregation after UV treatment (8). In this study, wild-type cells and deletion strains were tested for the ability to attach to a variety of surfaces and the formed structures and extracellular material were analyzed.  相似文献   
6.
The molecular mechanisms that regulate multicellular architecture and the development of extended apical bile canalicular lumens in hepatocytes are poorly understood. Here, we show that hepatic HepG2 cells cultured on glass coverslips first develop intercellular apical lumens typically formed by a pair of cells. Prolonged cell culture results in extensive organizational changes, including cell clustering, multilayering, and apical lumen morphogenesis. The latter includes the development of large acinar structures and subsequent elongated canalicular lumens that span multiple cells. These morphological changes closely resemble the early organizational pattern during development, regeneration, and neoplasia of the liver and are rapidly induced when cells are cultured on predeposited extracellular matrix (ECM). Inhibition of Rho kinase or its target myosin-II ATPase in cells cultured on glass coverslips mimics the morphogenic response to ECM. Consistently, stimulation of Rho kinase and subsequent myosin-II ATPase activity by lipoxygenase-controlled eicosatetranoic acid metabolism inhibits ECM-mediated cell multilayering and apical lumen morphogenesis but not initial apical lumen formation. Furthermore, apical lumen remodeling but not cell multilayering requires basal p42/44 MAPK activity. Together, the data suggest a role for hepatocyte-derived ECM in the spatial organization of hepatocytes and apical lumen morphogenesis and identify Rho kinase, myosin-II, and MAPK as potentially important players in different aspects of bile canalicular lumen morphogenesis.  相似文献   
7.
Cell surface structures of archaea   总被引:1,自引:0,他引:1  
  相似文献   
8.
Recently, the Surface (S)-layer glycoprotein of the thermoacidophilic crenarchaeote Sulfolobus acidocaldarius was found to be N-glycosylated with a heterogeneous family of glycans, with the largest having a composition Glc(1)Man(2)GlcNAc(2) plus 6-sulfoquinovose. However, genetic analyses of genes involved in the N-glycosylation process in Crenarchaeota were missing so far. In this study we identify a gene cluster involved in the biosynthesis of sulfoquinovose and important for the assembly of the S-layer N-glycans. A successful markerless in-frame deletion of agl3 resulted in a decreased molecular mass of the S-layer glycoprotein SlaA and the flagellin FlaB, indicating a change in the N-glycan composition. Analyses with nanoLC ES-MS/MS confirmed the presence of only a reduced trisaccharide structure composed of Man(1) GlcNAc(2) , missing the sulfoquinovose, a mannose and glucose. Biochemical studies of the recombinant Agl3 confirmed the proposed function as a UDP-sulfoquinovose synthase. Furthermore, S. acidocaldarius cells lacking agl3 had a significantly lower growth rate at elevated salt concentrations compared with the background strain, underlining the importance of the N-glycosylation to maintain an intact and stable cell envelope, to enable the survival of S. acidocaldarius in its extreme environment.  相似文献   
9.
Pharmacological modulation of p53 activity is an attractive therapeutic strategy in cancers with wild-type p53. Presently in clinical trials, the small molecule Nutlin-3A competitively binds to HDM2, a key negative regulator of p53 and blocks its activity. We have described resistance mutations in HDM2 that selectively reduce affinity for Nutlin but not p53. In the present communication, we show that stapled peptides targeting the same region of HDM2 as Nutlin are refractory to these mutations, and display reduced discrimination between the wild-type and mutant HDM2s with regards to functional abrogation of interaction with p53. The larger interaction footprint afforded by stapled peptides suggests that this class of ligands may prove comparatively more resilient to acquired resistance in a clinical setting.  相似文献   
10.
Poly(ADP-ribose) polymerase 1 (PARP1) is a key player in DNA repair, genomic stability and cell survival and it emerges as a highly relevant target for cancer therapies. To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells. This PARP1-biosensor is based on a PARP1-specific single-domain antibody fragment (~ 15 kDa), termed nanobody, which recognizes the N-terminus of human PARP1 with nanomolar affinity. In proteomic approaches, immobilized PARP1 nanobody facilitates quantitative immunoprecipitation of functional, endogenous PARP1 from cellular lysates. For cellular studies, we engineered an intracellularly functional PARP1 chromobody by combining the nanobody coding sequence with a fluorescent protein sequence. By following the chromobody signal, we were for the first time able to monitor the recruitment of endogenous PARP1 to DNA damage sites in live cells. Moreover, tracing of the sub-nuclear translocation of the chromobody signal upon treatment of human cells with chemical substances enables real-time profiling of active compounds in high content imaging. Due to its ability to perform as a biosensor at the endogenous level of the PARP1 enzyme, the novel PARP1 nanobody is a unique and versatile tool for basic and applied studies of PARP1 biology and DNA repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号