首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   21篇
  235篇
  2022年   2篇
  2020年   6篇
  2019年   4篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   8篇
  2012年   11篇
  2011年   9篇
  2010年   12篇
  2009年   10篇
  2008年   14篇
  2007年   6篇
  2006年   3篇
  2005年   6篇
  2004年   3篇
  2003年   8篇
  2002年   7篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   6篇
  1996年   5篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   7篇
  1991年   3篇
  1989年   2篇
  1988年   4篇
  1986年   2篇
  1983年   3篇
  1982年   2篇
  1979年   2篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   3篇
  1968年   2篇
  1967年   4篇
  1954年   1篇
  1918年   1篇
  1916年   1篇
  1914年   1篇
  1912年   1篇
  1911年   2篇
  1905年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
1.
The experimental study of the relationship between biodiversity and ecosystem function has mainly addressed the effect of species and number of functional groups. In theory, this approach has mainly focused on how extinction affects function, whereas dispersal limitation of ecosystem function has been rarely discussed. A handful of seed introduction experiments, as well as numerous observations of the effects of long‐distance dispersal of alien species, indicate that ecosystem function may be strongly determined by dispersal limitation at the local, regional and/or global scales. We suggest that it is time to replace biodiversity manipulation experiments, based on random draw of species, with those addressing realistic scenarios of either extinction or dispersal. Experiments disentangling the dispersal limitation of ecosystem function should have to take into account the probability of arrival. The latter is defined as the probability that a propagule of a particular species will arrive at a particular community. Arrival probability depends on the dispersal ability and the number of propagules of a species, the distance a species needs to travel, and the permeability of the matrix landscape. Current databases, in particular those in northwestern and central Europe now enable robust estimation of arrival probability in plant communities. We suggest a general hypothesis claiming that dispersal limitation according to arrival probability will have ecosystem‐level effects different from those arising due to random arrival. This hypothesis may be rendered more region‐, landscape‐ or ecosystem‐specific by estimating arrival probabilities for different background conditions.  相似文献   
2.
Evidence for the existence of an energy-dependent urea permease was found for Alcaligenes eutrophus H16 and Klebsiella pneumoniae M5a1 by studying uptake of 14C-urea. Since intracellular urea was metabolized immediately, uptake did not result in formation of an urea pool. Evidence is based on observations that the in vivo urea uptake and in vitro urease activity differ significantly with respect to kinetic parameters, temperature optimum, pH optimum, response towards inhibitors and regulation. The K m for urea uptake was 15–20 times lower (38 M and 13 M urea for A. eutrophus and K. pneumoniae, respectively) than the K m of urease for urea (650 M and 280 M urea), the activity optimum for A. eutrophus was at pH 6.0 and 35°C for the uptake and pH 9.0 and 65°C for urease. Uptake but not urease activity in both organisms strongly decreased upon addition of inhibitors of energy metabolism, while in K. pneumoniae, potent inhibitors of urease (thiourea and hydroxyurea) did not affect the uptake process. Significant differences in the uptake rates were observed during growth with different nitrogen sources (ammonia, nitrate, urea) or in the absence of a nitrogen source; this suggested that a carrier is involved which is subject to nitrogen control. Some evidence for the presence of an energy-dependent uptake of urea was also obtained in Pseudomonas aeruginosa DSM 50071 and Providencia rettgeri DSM 1131, but not in Proteus vulgaris DSM 30118 and Bacillus pasteurii DSM 33.Non-standard abbreviations CCCP Carbonylcyanide-m-chlorphenylhydrazone - DCCD dicyclohexylcarbodiimide - DNP 2,4-dinitrophenole  相似文献   
3.
Characteristics of aeroponics are discussed. Contrast is made, where appropriate, with hydroponics and aero-hydroponics as applies to research and commercial applications of nutrient mist technology. Topics include whole plants, plant tissue cultures, cell and microbial cultures, and animal tissue cultures with regard to operational considerations (moisture, temperature, minerals, gaseous atmosphere) and design of apparati.  相似文献   
4.
Aspartate129 in porcine somatotropin was converted into a cyclic imide residue (succinimide) under acidic solution conditions. Reversed-phase high performance liquid chromatography was utilized to isolate and quantitate this altered species, which accounted for approximately 30% of the total protein. The molecular mass of this modified species was determined by electrospray mass spectrometry to be 18 Da less than normal porcine somatotropin, indicative of a loss of 1 H2O molecule. Tryptic peptide mapping demonstrated that the peptide composed of residues 126-133 was altered in this modified protein. Amino acid analysis, amino acid sequencing, mass spectrometry, and capillary zone electrophoresis were used to demonstrate that aspartate129 in this peptide had been converted into a succinimide residue. Further confirmation that this peptide contained a succinimide was obtained by hydrolyzing the modified peptide at pH 9.0, which yielded both the aspartate and isoaspartate peptides.  相似文献   
5.
“Vegetation Structure and Species Co-existence” was the topic of a symposium organized in 1992, in Tartu, Estonia. The symposium was dedicated to the memory of Professor Teodor Lippmaa (1892–1943), who made important contributions, especially to the concept of synusia in community ecology. Current views on relation between vegetation structure and species co-existence vary. This variation is partly due to the traditional opposite views of plant community structure (the individualistic and organismic concept); these views refer both to the strength and role of biotic interactions within a community, and to the community structure.  相似文献   
6.
Global change may substantially affect biodiversity and ecosystem functioning but little is known about its effects on essential biotic interactions. Since different environmental drivers rarely act in isolation it is important to consider interactive effects. Here, we focus on how two key drivers of anthropogenic environmental change, climate change and the introduction of alien species, affect plant–pollinator interactions. Based on a literature survey we identify climatically sensitive aspects of species interactions, assess potential effects of climate change on these mechanisms, and derive hypotheses that may form the basis of future research. We find that both climate change and alien species will ultimately lead to the creation of novel communities. In these communities certain interactions may no longer occur while there will also be potential for the emergence of new relationships. Alien species can both partly compensate for the often negative effects of climate change but also amplify them in some cases. Since potential positive effects are often restricted to generalist interactions among species, climate change and alien species in combination can result in significant threats to more specialist interactions involving native species.  相似文献   
7.
Prior to the introduction of white‐nose syndrome (WNS) to North America, temperate bats were thought to remain within hibernacula throughout most of the winter. However, recent research has shown that bats in the southeastern United States emerge regularly from hibernation and are active on the landscape, regardless of their WNS status. The relationship between winter activity and susceptibility to WNS has yet to be explored but warrants attention, as it may enable managers to implement targeted management for WNS‐affected species. We investigated this relationship by implanting 1346 passive integrated transponder (PIT) tags in four species that vary in their susceptibility to WNS. Based on PIT‐tag detections, three species entered hibernation from late October to early November. Bats were active at hibernacula entrances on days when midpoint temperatures ranged from −1.94 to 22.78°C (mean midpoint temperature = 8.70 ± 0.33°C). Eastern small‐footed bats (Myotis leibii), a species with low susceptibility to WNS, were active throughout winter, with a significant decrease in activity in mid‐hibernation (December 16 to February 15). Tricolored bats (Perimyotis subflavus), a species that is highly susceptible to WNS, exhibited an increase in activity beginning in mid‐hibernation and extending through late hibernation (February 16 to March 31). Indiana bats (M. sodalis), a species determined to have a medium–high susceptibility to WNS, remained on the landscape into early hibernation (November 1 to December 15), after which we did not record any again until the latter portion of mid‐hibernation. Finally, gray bats (M. grisescens), another species with low susceptibility to WNS, maintained low but regular levels of activity throughout winter. Given these results, we determined that emergence activity from hibernacula during winter is highly variable among bat species and our data will assist wildlife managers to make informed decisions regarding the timing of implementation of species‐specific conservation actions.  相似文献   
8.
It is debated whether alien plants in new environments benefit from being mycorrhizal and whether widely distributed natives and aliens differ in their associations with mycorrhizal fungi. Here, we compared whether species differing in their origin status, i.e. natives, archaeophytes (alien species introduced before the year 1500) and neophytes (introduced after the year 1500), and arbuscular mycorrhizal (AM) status (obligate, facultative, non‐mycorrhizal) differ in their area of occupancy in Germany (i.e. number of occupied grid cells, each ~130 km²). We used generalized linear models, incorporating main effects and up to three‐way interactions combining AM status, origin status and plant functional traits. The latter were chosen to describe the possible trade‐off in carbon allocation either towards the symbiosis or to other plant structures, such as storage organs (significant interactions involving traits were assumed to indicate the existence of such trade‐offs). AM status significantly explained the area of occupancy of natives and neophytes – with facultative mycorrhizal species occupying the largest area in both groups – but was less pronounced among archaeophytes. Archaeophytes may have reduced dependency on AM fungi, as they are generally agricultural weeds and the symbiosis potentially becomes obsolete for plants growing in habitats providing a steady provision of nutrients. Trait interactions between AM status and other functional traits were almost exclusively detected for neophytes. While facultative mycorrhizal neophytes benefit from trade‐offs with other traits related to high C cost in terms of area of occupancy, such trade‐offs were almost absent among natives. This indicates that natives and neophytes benefit differently from the symbiosis and suggests that native AM fungal partners might be less important for neophytic than for native plant species or that more time is required to establish similar relationships between neophytes and native fungal symbionts.  相似文献   
9.
Abstract. A wooded meadow at Laelatu in western Estonia was found to be very rich in vascular plants. The maximum number of species found was 25 in a 10 cm x 10 cm plot, 42 in a 20 cm x 20 cm plot and 63 in a 1 m2 plot. Species richness is related to the management history of the site. The highest richness was found in sites with the most regular long-term mowing. Species density was lower in the case of fertilization or temporary cessation of mowing. The richest community had an LAI of 2.8 and an above-ground dry biomass of 175 g/m2. With increasing height of the herb layer the number of species decreases. Small disturbances cause a remarkable decrease in species density.  相似文献   
10.
Biodiversity of ecological communities has been examined widely. However, comparisons of observed species richness are limited because they fail to reveal what part of the differences are caused by natural variation in species pool size and what part is due to dark diversity – the absence of suitable species from a species pool. In other words, conventional biodiversity inventories do not convey information about how complete local plant communities are. We therefore propose the community completeness concept – a new perspective on the species pool framework. In order to ascertain community completeness, we need to estimate the extent of dark diversity, for which several methods are under development. We recommend the Community Completeness Index based on a log-ratio (or logistic) expression: ln(observed richness/dark diversity). This metric offers statistical advantages over other methods (e.g. the proportion of observed richness from the species pool). We discuss how community completeness can be related to long-term and successional community stability, landscape properties and disturbance patterns as well as to a variety of biotic interactions within and among trophic levels. The community completeness concept is related to but distinctive from the alpha-beta-gamma diversity approach and the community saturation phenomenon. The Community Completeness Index is a valuable metric for comparing biodiversity of different ecosystems for nature conservation. It can be used to measure the success of ecological restoration and vulnerability to invasion by alien species. In summary, community completeness is an interface between observed local observed species richness and dark diversity, which can be useful both in theoretical and applied biodiversity research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号